
Intro to BricxCC Programming

© Copyright Paul Oh

Hands-on Lab

Lego File and Timer Handing - Review

We’ve explored the Lego NXT’s input port and ADC to measure resistances and voltages. This
lab will turn the NXT into a data logger. Also, the lab will explore using the output port as a
voltage source.

Concept 1 – NXT File Saving Review:

As a quick review, the NXT’s ability to save data will be explored.

The program displaySquareAndSquareRoot1_0.nxc displayed an integer, its square and
square root on the Brick’s LCD. This program used the for-loop to iterate the integer from 1 to 10.
Building on this example, a program is written to save the values to a file. The file will then be
imported into an Excel worksheet. Once one has a worksheet, the data can be manipulated
and/or plotted.

Step 1: Click File – Open and load displaySquareAndSquareRoot1_0.nxc. Click File
– Save As with the name “displaySquareAndSquareRoot2_0.nxc”.

Step 2: Define global variables that serve for file handling. Add the following code to above your
task main routine.

// File: displaySquareAndSquareRoot2_0.nxc
// Date: 10/01/12 15:43
// Desc: Display number, its square and square root save to file
// Vers: 2.0
// Refs: displaySquareAndSquareRoot1_0.nxc

// Global variables (for file writing)
unsigned int result; // flag returned when handling files
byte fileHandle; // handle to the data file
short bytesWritten; // number of bytes written to the file
string fileHeader; // column header for data in the file
int fileNumber, filePart; // integers to split up data file names
string fileName; // name of the file
string strFileNumber; // file number e.g myDataFile 1, 2, 3
string strFilePart; // file part e.g. myDataFile1-1, 1-2, 1-3
string text; // string to be written to file i.e. data values

task main ()

Intro to BricxCC Programming

© Copyright Paul Oh

Step 3: Compose a function to initiate a file. Add the following code above task main:

Step 4: Compose a function to write to file. Add the following code above task main:

string strFilePart; // file part e.g. myDataFile1-1, 1-2, 1-3
string text; // string to be written to file i.e. data values

// Create and initialize a file
void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "squareData.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

 // check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("squareData" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "x, x^2, sqrt(x)" ; // header for myData file
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

task main ()

} // end InitWriteToFile

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file
 // write string to file
 result=WriteLnString(fileHandle, strTempText, bytesWritten);
 // if the end of file is reached, close the file and create a new part
 if (result==LDR_EOFEXPECTED) // LDR_EOFEXPECTED is flagged when end-of-file
 { // close the current file
 CloseFile(fileHandle); // NXT Guide Section 6.59.2.1 pg. 535
 // Closes file associated with file handle

 // create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("squareData" , strFileNumber,"-", strFilePart ,".csv");

 // delete the file if it exists
 DeleteFile(fileName); // NXT Guide Section 6.59.2.5 pg. 537
 // Delete the file specified by the string input

 // create a new file
 CreateFile(fileName, 1024, fileHandle);
 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 WriteLnString(fileHandle, strTempText, bytesWritten);
 } // end if
} // end WriteToFile

task main ()

Intro to BricxCC Programming

© Copyright Paul Oh

Step 5: Next, compose a function that closes the file. Add the following code above task main:

At this point, save your NxC program. To recap, Step 2 declared the variables needed for file
handling and Steps 3 to 5 created functions to respectively initialize (i.e. create), write string data
and close a file.

Step 6: File data is stored as strings. As such, strings must be declared for each integer and
float. Also, to create a file, one must initialize one. Add the following within task main:

Step 7: In the for-loop, the program iterates from 1 to 10, calculating the square and square root.
We can use the FormatNum function to create a string version of numbers (i.e. integers and
floats). Add the following within the for-loop:

} // end WriteToFile

// Close the file
void StopWriteToFile() {
 // close the file
 CloseFile(fileHandle);
} // end StopWriteToFile

task main ()

Add this function

task main ()
{
 int x; // integers from 1 to 10
 int xSquared; // square of x
 float xSquareRoot; // square root of x

 string strX;
 string strXSquared;
 string strXSquareRoot;

 // Create a new file that captures time and motor speed
 InitWriteToFile();

 for (x = 1; x <=10; x++) {
 xSquared = x*x;
 xSquareRoot = sqrt(x);

Declare string versions of
integers and floats. Also,
create a file.

 TextOut (10, LCD_LINE4, FormatNum("x = %d" , x));
 TextOut (10, LCD_LINE5, FormatNum("xSquared = %d" , xSquared));
 TextOut (10, LCD_LINE6, FormatNum("sqrt(x) = %3.3f" , xSquareRoot));
 Wait (SEC_2);

 // Create string version of calculated values
 strX = FormatNum("%d" , x);
 strXSquared = FormatNum("%d" , xSquared);
 strXSquareRoot = FormatNum("%3.3f" , xSquareRoot);

 } // end of for loop

} // end of main

FormatNum is akin to ANSI-C’s
sprintf() function. It creates strings
from numbers.

Intro to BricxCC Programming

© Copyright Paul Oh

Step 8: Finally, one should write the 3 strings (strX, strXSquared and strXSquareRoot) to
the file. To do so efficiently, one can employ the ANSI-C strcat function which concatenates
multiple strings into a single one. Finally, write the string to file. Add the following code within the
for-loop

Step 9: After the program has generated the data (i.e. completed the for-loop), one terminates
the program gracefully by closing the file. One can also add an LCD message and beep to let the
user know the program is done. Add the following after the for-loop and before the end of
main.

// Create string version of calculated values
 strX = FormatNum("%d" , x);
 strXSquared = FormatNum("%d" , xSquared);
 strXSquareRoot = FormatNum("%3.3f" , xSquareRoot);

 // Concatenate the 3 strings into a single one.
 // Write resulting string to file. The text will be end with a EOL
 text=StrCat(strX, "," , strXSquared, "," , strXSquareRoot, ",");
 WriteToFile(text);

 } // end of for loop

} // end of main

Use strcat to
combine strings.
Write resulting
string to file

 // Concatenate the 3 strings into a single one.
 // Write resulting string to file. The text will be end with a EOL
 text=StrCat(strX, "," , strXSquared, "," , strXSquareRoot, ",");
 WriteToFile(text);
 } // end of for loop

 // Finished computing square and square root, so clean up and quit
 ClearScreen();
 TextOut(0, LCD_LINE2, "Quitting", false);
 StopWriteToFile();
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
 Wait(SEC_2);

} // end of main

Add this alert user of
termination and
close file

Intro to BricxCC Programming

© Copyright Paul Oh

Step 10: Save, compile and execute the resulting program. The program should iterate from 1 to
10, displaying the integers, its square and square root. Additionally, in the background, the Brick
stores the data to file named: squareData.csv.

To view this data file, after the program completes, select Tools – NXT Explorer (see Figure 1A).
A pop-up box should display the files stored within your NXT Brick (as shown in Figure 1B).
Click-and-drag the file squareData.csv from the left pane (i.e. Brick’s directory) to the right one
(your PC’s drive).

Step 11: Double-click on the version of squareData.csv that is saved on your PC. Excel
should already be configured to open CSV (comma-separated files), resulting in Figure 1C.
Figure 1D shows the resulting scatter plot of the first 2 columns.

Figure 1A: Launch the NXT Explorer to view
Brick’s files

Figure 1B: Click-and-drag the data file
squareData.csv to your PC.

Figure 1C: Excel opens the resulting
squareData.csv file. One can then select data
for a scatter plot.

Figure 1D: Scatter plot of first 2 columns of data
reveal the expected parabolic curve resulting
from computing the square of values.

Intro to BricxCC Programming

© Copyright Paul Oh

Code Explanation: displaySquareAndSquareRoot2_0.nxc iterates from 1 to 10 using a
for-loop. Within this loop, the square and square root is also computed. To save any values to a
file, one must first declare (Step 2) and initialize (Step 3) one. File data is stored as strings (i.e. a
collection of alphanumeric characters). As such, string versions of any computation are needed
and the strcat function is used (Steps 6 and 7) along with the file writing function created in Step
4. After computations are finished (i.e. for-loop terminates), the file should be closed (Step 9)
using the function created in Step 5. Steps 10 and 11 show the instructions for using NXT
Explorer within the BricxCC IDE to export any files saved on the Brick’s memory, to one’s PC.

Concept 2 – NXT Timing Review:

As a quick review, the NXT’s timer capabilities will be explored. Here, one defines a sampling
frequency. A calculation is performed and the result and elapsed time will be recorded to a file.

Step 1: Open BricxCC, click File – New and save your program as timer1_0.nxc. Write the
following code.

Exercise 1: In NxC create programs for the following:

1-1: Iterate integers from -10 to +10 incrementally by 1. Compute the square and cube and save

to a file named “squareAndCube.csv”. Export the data file and plot the curves in Excel.

1-2: Capture all file handling functions into a header file named fileSavingFunctions.h.
Rewrite a new program called displaySquareAndSquareRoot3_0.nxc that includes this
header file. This new program should run like displaySquareAndSquareRoot2_0.nxc –
and just serves as a sanity check that file saving works.

1-3: Prove that you know how to name data files and save data in desired formats, and can import

these into Excel.

// FILE: timer1_0.nxc - Works!
// DATE: 08/26/16 12:42
// AUTH: P.Oh
// DESC: Basic timer and file saving demonstration
// User specifies sampling time and desired maximum elapsed time;
// calculate and write calculated value to file at desired sampling time

#include "fileSavingFunctionsForTimer1_0.h"

task main() {

 // Boolean related variables - Brick buttons to start/stop execution
 bool orangeButtonPushed, greyButtonPushed;

 // Timing related variables
 long prevTick, curTick, deltaTick; // previous, current and difference in ticks
 string strDeltaTick; // string form of deltaTick for file writing
 float deltaTickInSeconds; // NB: deltaTick in [msec]
 float elapsedTimeInSeconds; // elapsed time in [sec]
 string strElapsedTimeInSeconds; // string form of elapsed time for file writing
 float maxElapsedTimeInSeconds; // total time in [sec] for data acquisition
 float samplingTimeInSeconds;
 float waitingTimeInSeconds; // for delay loop
 long waitingTimeInMilliSeconds;
 float epsilonTime = 0.0001; // maxElapsedTimeInSeconds - elapsedTimeInSeconds will be almost zero

 // Calculation related variables
 int x;
 float xSquareRoot;
 string strXSquareRoot; // string form of xSquareRoot for file-writing

 // Create a new file to capture values... call the write-to-file function
 InitWriteToFile();

Intro to BricxCC Programming

© Copyright Paul Oh

Code description: task main begins by declaring button and timer related variables. Also,
time related variables are declared. As one will encounter later, the NxC function
CurrentTick() will be used to poll the Brick’s current clock (called a tick counter). Like a
stopwatch, variables curTick and prevTick are used to calculate the time that has elapsed
and store the resulting difference in the variable elapsedTimeInSeconds. File writing uses
alphanumeric values so numeric variables are also declared strings like
strElapsedTimeInSeconds.

Step 2: Continue adding code to initiate the timer in timer1_0.nxc

Code description: This code segment prompts the user to push the NXT’s orange button.
Timing is defined with sampling time (0.1 sec) with samplingTimeInSeconds and the
maximum time for the program to run (10 sec) with maxElapsedTimeInSeconds. Before
computing (in Step 3), the elapsed time is set to 0.0 sec with elapsedTimeInSeconds. The
timer is then initiated with a call to CurrentTick().

Step 3: Continue adding code to calculate motor velocity and elapsed time

 // Prompt user to begin
 TextOut (0, LCD_LINE1, "Orange Btn starts");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 ClearScreen();
 TextOut(0, LCD_LINE1, "Grey Btn Stops");

 // Initialize timing- and calculation-related variables
 samplingTimeInSeconds = 0.1; // sampling time in [sec]
 maxElapsedTimeInSeconds = 10.0; // total time of data acquisition
 elapsedTimeInSeconds = 0.0; // set elapsed time to zero
 prevTick = CurrentTick();
 x = 0;

 do {
 greyButtonPushed = ButtonPressed(BTNEXIT, FALSE);
 TextOut(0, LCD_LINE6, FormatNum("Time = %5.3f s" , elapsedTimeInSeconds));

 // perform desired work i.e. square root of values
 x = x + 1;
 xSquareRoot = sqrt(x);
 strXSquareRoot = FormatNum("%5.2f" , xSquareRoot);

 // check how much time to wait for sampling interval to elapse
 curTick = CurrentTick(); // get current tick count
 deltaTick = curTick - prevTick; // measure elapsed ticks [msec]
 deltaTickInSeconds = deltaTick/1000.0; // in [sec]
 waitingTimeInSeconds = samplingTimeInSeconds - deltaTickInSeconds;
 waitingTimeInMilliSeconds = waitingTimeInSeconds * 1000;
 Wait(waitingTimeInMilliSeconds);

 // sampling time interval has past, so capture time and write to file
 curTick = CurrentTick();
 deltaTick = curTick - prevTick; // measure elapsed ticks [msec]
 deltaTickInSeconds = deltaTick/1000.0; // in [sec]
 elapsedTimeInSeconds = elapsedTimeInSeconds + deltaTickInSeconds; // in [sec]
 strElapsedTimeInSeconds = FormatNum("%5.3f" , elapsedTimeInSeconds);
 text=StrCat(strElapsedTimeInSeconds, "," , strXSquareRoot);
 WriteToFile(text);

 // Update current tic value
 prevTick = curTick;

 } while(((maxElapsedTimeInSeconds - elapsedTimeInSeconds) >= epsilonTime) && !greyButtonPushed);
 PlayTone(400,200); TextOut(0, LCD_LINE4, "Done!");

 StopAllTasks(); StopWriteToFile();

} // end main

Intro to BricxCC Programming

© Copyright Paul Oh

Code description: The program begins a do-while loop which exits when the user pushed the
Brick’s grey button or when the total elapsed time has been reached.

A simple square root calculation is performed. The timer is polled again with a curTick =
CurrentTick() statement. The difference between ticks is computed between the current and
previous ticks using deltaTick= curTick – prevTick statement. This difference is compared to the
sampling time to determine how long the Brick should idle. This idle time is given by a
Wait(waitingTimeInMilliSeconds) statement.

After the Brick has reached the appropriate sampling time, the elapsed time since the user hit the
orange button is computed. This elapsed time and square root computation is then written to file
using a WriteToFile(text) statement.

Before looping back, the tick variables are updated using a prevTick = curTick statement.

Once the total elapsed time exceeds the user-defined maximum (i.e. 10 sec), the loop exits, plays
a tone, and gracefully exits.

Step 5: Lastly, save your header file fileSavingFunctions.h as
fileSavingFunctionsForTimer1_0.h and make the following modifications.

In your WriteToFile() function, edit code so that data is saved to the desired file

void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "timer.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

// check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("timer" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "time [s], Sqrt" ; // header
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file
:
:
:
// create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("timer" , strFileNumber,"-", strFilePart ,".csv");
:
 } // end if
} // end WriteToFile

Intro to BricxCC Programming

© Copyright Paul Oh

Step 6: Save both timer1_0.nxc and fileSavingFunctionsForTimer1_0.h files.
Compile and execute. Once the program runs, hit the orange button to start the program. After
10 seconds, the program should play a tone and exit. Open NXT Explorer to retrieve your data
file (called timer.csv) and plot in Excel which should resemble Figure 2A.

Figure 2A: Excel plot of timer.csv

0

1

2

3

4

5

0 2 4 6 8 10 12

Sqrt

 Sqrt

Exercise 2: In NxC create programs for the following:

2-1: Modify timer1_0.nxc for a maximum run time of 20 seconds and computes the square root at

a 0.1 second sampling time. Your saved files may likely look like timer.csv, timer-1.csv,
timer-2.csv, etc. Stitch these data files into a single one and plot the curve.

2-2: Prove that you can capture data for desired duration and at a desired sampling time.

