Mechanisms and Algorithms

Lab: Lego Levers, Shafts and Cranks

Lab Philosophy

	Electronics	Mechanisms	Lego	80/20
Plans	Schematic Drawings	Assemblies	Assemblies	Assemblies
Items	Resistors, etc	Beams, etc	Beams, etc	Beams, etc
Acquisition	Radio Shack	McMaster-Carr	Lego Store	80/20 Store
Drawing	Orcad	Pro/E	MLCAD	CAD Plug-ins
Simulating	Spice	Pro/E	Pro/E	Pro/E
Test/Evaluate	Breadboarding	Quick-connect	Quick-connect	Quick-connect

- Plans: read drawings, understand part roles and part connections
- Items: Learn proper name of parts and what parts exist
- Acquisition: Learn vendors for Bill of Materials (BOM)
- Drawing: Communicating and Archiving your designs
- Simulation: Rapid prototyping
- T\&E: Learn to physically construct, identify challenges and learn troubleshooting

Lab Experiments

1. Introduction to Lego Fundamentals
2. Reciprocating Motion: Simple Crank
3. Reciprocating Motion: 3-Bar Crank (Isogawa Pg. 61)
4. Reciprocating Motion: Crankshaft (Isogawa Pg. 63)

Homework: Reciprocating Motion: Slider-Crank (Isogawa Pg. 62)

Exercise 1: Introduction to Lego Fundamentals

Note 6:5 ratio of unit height to unit length.
In Lego: Vertical > Horizontal. We have a 6:5 ratio

6:5 ratio important: Naïve approaches yield weak and unsound connections:

Stacking (naïve approach)

Structural weak (try it)

Bracing (best practice)

5:6 ratio demands 2 plates for aligning holes

Motivation for Plates

From example: the 5:6 rule demands 2 plates

- Two stacked bricks = 1 vertical unit
- 1 plate $=1 / 3$ vertical unit

1 vertical unit $+2 * 1 / 3$ vertical units $=5 / 3$ vertical units
$5: 6$ ratio states 6 vertical units $=5$ horizontal units
Hence:

$$
\frac{5}{3} \text { vertical units } \bullet \frac{6 \text { horizontal units }}{5 \text { vertical units }}=2 \text { horizontal units }
$$

Exercise 1-1: What do you need to stack to align holes with a 5-hole beam

Aligning holes
Note: space between aligning holes $=4$ horizontal units 4 horizontal units $\bullet \frac{5 \text { vertical units }}{6 \text { horizontal units }}=\frac{20}{6}=\frac{10}{3}=3 \frac{1}{3}$ vertical units

4 vertically stacked bricks = 3 vertical units. Hence need plate

Plate Equation

$$
2(3 a+b) \equiv 5 c \quad \begin{aligned}
& a: \text { Number of full-height vertical units (i.e. N bricks - 1) } \\
& b: \text { Number of 1/3-height vertical units (i.e. plates) } \\
& c: \text { Number horizontal units between holes }
\end{aligned}
$$

Exercise 1-2: Construct the following and complete the following table

Full height vertical units	$1 / 3$-height vertical units	Horizontal Units
1	2	2
3	1	4
		6
6		
8		

Answer:

Full height vertical units	$1 / 3$-height vertical units	Horizontal Units
1	2	2
3	1	4
5		6
6	2	8
8	1	10

Gears

Gear Teeth [number]	Gear Radius [horiz units]
8	0.5
16	1
24	1.5
40	2.5

Gear size in horizontal units demands integer-sized spacing:

Gears: Getting away with non-integer spacing

Recall that 2 stacked bricks $=1$ vertical unit

$$
1 \text { vertical unit } \bullet \frac{6 \text { horizontal units }}{5 \text { vertical units }}=1.2 \text { horizontal units }
$$

Recall that for a beam, space between holes $=1$ horiz unit

$$
(1.2 \text { horiz units })^{2}+(1 \text { horiz units })^{2}=1.44+1=2.44 \text { horiz units }^{2}
$$

Thus diagonal space $=\sqrt{2.44}=1.56$ horizontal units
i.e. close enough for a 16:8 or 2:1 gear ratio

Exercise 1-3: Construct a 3:2 gear train
Answer: Hint: Use a plate to space two beams. Use 24T and 16T gears

Exercise 1-4: Construct a 9:1 gear train

Answer: Hint: Use two 3:1 gear trains

Note 6:5 ratio of unit height to unit length.

Exercise 2: Simple Crank

Lego Simple Crank

Video

Step 1: Parts for Simple Crank (seen on bottom)

Step 3: Mount Axle/Pin on Gear with Pin

Step 2: Pin the Gear to Beam. Bush Axle 4 to Beam

Step 4: Pass Axle 10 thru Axle/Pin and mount on assembly

Exercises

2-1 Replace Beam with Brick to re-construct a simple cran

Simple Crank using Brick

Exercises

2-2 Construct the following crank (more complex)

Exercise 3: The Crank and 3-Bar Linkage

Isogawa’s Lego Crank 3-Bar Linkage

Video

Step 1: Parts. NB: Contrast parts 4459 and 3673

Step 3: Pin Beam 7 and Gear to Beam 5

Step 2: Pin the Gear. Join Beam 5 and Beam 7

Step 4: Axle and bush the Gear. Join 2 Beam 7s.

MLCAD Building Instructions and POV Rendering

Exercises

3-1 Replace Beams with Bricks to construct the following 3-Bar Crank (left) 3-2 Construct the following 3-Bar Crank (right)

Left: 3-Bar Crank using Bricks

Right: 3-Bar with Crank near Middle

Exercise 4: The Crankshaft

Isogawa's Lego Crankshaft

Video

Step 1: Parts.

Step 3: Pin Axle/Pins to Beams 5 and 11

Step 2: Pin the Gear to Beam 11

Step 4: Thread Axle 5 thru Angle Connector. Pin Beam

Exercises

4-1 Replace Beams with Bricks to construct the following Crankshaft (left) 4-2 Construct the following (right). Rotate Grey Gear. Black Gear output?

Left: Double Crankshaft using Bricks

Right: Crank and Lever (front and rear views)

