Mechanisms and Algorithms

Lab: Lego Levers, Shafts and Cranks

Lab Philosophy

	Electronics	Mechanisms	Lego	80/20
Plans	Schematic Drawings	Assemblies	Assemblies	Assemblies
Items	Resistors, etc	Beams, etc	Beams, etc	Beams, etc
Acquisition	Radio Shack	McMaster-Carr	Lego Store	80/20 Store
Drawing	Orcad	Pro/E	MLCAD	CAD Plug-ins
Simulating	Spice	Pro/E	Pro/E	Pro/E
Test/Evaluate	Breadboarding	Quick-connect	Quick-connect	Quick-connect

- Plans: read drawings, understand part roles and part connections
- Items: Learn proper name of parts and what parts exist
- Acquisition: Learn vendors for Bill of Materials (BOM)
- Drawing: Communicating and Archiving your designs
- Simulation: Rapid prototyping
- T&E: Learn to physically construct, identify challenges and learn troubleshooting

Lab Experiments

- 1. Introduction to Lego Fundamentals
- 2. Reciprocating Motion: Simple Crank
- 3. Reciprocating Motion: 3-Bar Crank (Isogawa Pg. 61)
- 4. Reciprocating Motion: Crankshaft (Isogawa Pg. 63)

Homework: Reciprocating Motion: Slider-Crank (Isogawa Pg. 62)

Exercise 1: Introduction to Lego Fundamentals

Note 6:5 ratio of unit height to unit length.

In Lego: Vertical > Horizontal. We have a 6:5 ratio

6:5 ratio important: Naïve approaches yield weak and unsound connections:

Stacking (naïve approach)

Structural weak (try it)

versus

Bracing (best practice)

5:6 ratio demands 2 plates for aligning holes

Motivation for Plates

From example: the 5:6 rule demands 2 plates

- Two stacked bricks = 1 vertical unit
- 1 plate = 1/3 vertical unit

1 vertical unit + 2*1/3 vertical units = 5/3 vertical units

5:6 ratio states 6 vertical units = 5 horizontal units

Hence:

$$\frac{5}{3}$$
 vertical units \bullet $\frac{6 \text{ horizontal units}}{5 \text{ vertical units}} = 2 \text{ horizontal units}$

Exercise 1-1: What do you need to stack to align holes with a 5-hole beam

Plate Equation

$$2(3a+b) \equiv 5c$$

- a : Number of full-height vertical units (i.e. N bricks 1)
- b : Number of 1/3-height vertical units (i.e. plates)
- C: Number horizontal units between holes

Exercise 1-2: Construct the following and complete the following table

Full height vertical units	1/3-height vertical units	Horizontal Units
1	2	2
3	1	4
		6
6		
8		

Answer:

Full height vertical units	1/3-height vertical units	Horizontal Units
1	2	2
3	1	4
5		6
6	2	8
8	1	10

Gears

Gear Teeth	Gear Radius	
[number]	[horiz units]	
8	0.5	
16	1	
24	1.5	
40	2.5	

Gear size in horizontal units demands integer-sized spacing:

Gears: Getting away with non-integer spacing

Recall that 2 stacked bricks = 1 vertical unit 1 vertical unit • $\frac{6 \text{ horizontal units}}{5 \text{ vertical units}} = 1.2 \text{ horizontal units}$ Recall that for a beam, space between holes = 1 horiz unit $(1.2 \text{ horiz units})^2 + (1 \text{ horiz units})^2 = 1.44 + 1 = 2.44 \text{ horiz units}^2$ Thus diagonal space = $\sqrt{2.44} = 1.56 \text{ horizontal units}$

i.e. close enough for a 16:8 or 2:1 gear ratio

Exercise 1-3: Construct a 3:2 gear train

Answer: Hint: Use a plate to space two beams. Use 24T and 16T gears

Exercise 1-4: Construct a 9:1 gear trainAnswer: Hint: Use two 3:1 gear trains

Exercise 2: Simple Crank

Lego Simple Crank

Video

Step 1: Parts for Simple Crank (seen on bottom)

Step 3: Mount Axle/Pin on Gear with Pin

Step 2: Pin the Gear to Beam. Bush Axle 4 to Beam

Step 4: Pass Axle 10 thru Axle/Pin and mount on assembly

2-1 Replace Beam with Brick to re-construct a simple cran

Simple Crank using Brick

2-2 Construct the following crank (more complex)

Exercise 3: The Crank and 3-Bar Linkage

Isogawa's Lego Crank 3-Bar Linkage

Video

Step 1: Parts. NB: Contrast parts 4459 and 3673

Step 3: Pin Beam 7 and Gear to Beam 5

Step 2: Pin the Gear. Join Beam 5 and Beam 7

Step 4: Axle and bush the Gear. Join 2 Beam 7s.

MLCAD Building Instructions and POV Rendering

3-1 Replace Beams with Bricks to construct the following 3-Bar Crank (left)3-2 Construct the following 3-Bar Crank (right)

Left: 3-Bar Crank using Bricks

Right: 3-Bar with Crank near Middle

Exercise 4: The Crankshaft

Isogawa's Lego Crankshaft

Video

Step 1: Parts.

Step 3: Pin Axle/Pins to Beams 5 and 11

Step 2: Pin the Gear to Beam 11

Step 4: Thread Axle 5 thru Angle Connector. Pin Beam

4-1 Replace Beams with Bricks to construct the following Crankshaft (left)4-2 Construct the following (right). Rotate Grey Gear. Black Gear output?

Left: Double Crankshaft using Bricks

Right: Crank and Lever (front and rear views)