
Lecture XX                                           

 1 

Lecture XX – Path Planning I: Potential Fields 
 
XX Potential Fields 
 
The left figure below depicts path planning where the robot must travel from start to target 
locations without colliding into obstacles.  The right figure depicts a solution generated by the 
potential field based method.  Well-tested, well understood and ubiquitous, this method serves as 
a good starting point to gather experience in autonomous robot navigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Founded upon attraction-repulsion theory in physics, the robot and obstacles are modeled as 
point particles.  The configuration space, which is the environment the robot moves in, is modeled 
to be under the influence of a potential field U with obstacles and the targets modeled as 
repulsive, rU , and attractive, aU , forces respectively.  In other words 
 
 
 
 
where q is the configuration vector, or the current robot location 
 
 
 
 
 
 
Recall that the gradient yields the direction of maximum increase.  Thus, taking the gradient of 
the potential field, the robot should move away from obstacles and be drawn to the target.  In 
other words 
 
 
 
 
where the negative means to move in the direction opposite of maximum.  What remains is to 
define suitable functions for rU  and aU . 

 
 
The robot must navigate from start position 
(0,0) to target location (10,10) without colliding 
into the three obstacles (squares). 

 
 
The path generated by a potential field based 
method appears to work. 
 

)()()( qUqUqU ra +=  (1) 









=
y
x

q (2) 

{ })()( qUqUq raq +−∇=& (3) 



Lecture XX                                           

 2 

XX.1 Attractive Potential 
 
Because a gradient is performed, a suitable aU must be differentiable across the entire 

configuration space.  Additionally, aU should increase as the robot moves away from target.  As 
such, one possibility is to use a parabolic well defined as 
 
 
 
where  
 
 
 
and 
 
 
 
 
 
 
 
Problem XX.1: Derive the gradient for the attractive potential defined by equations (4) and (5) 
 
Solution XX.1: Recall that the gradient is a vector given by 
 
 
 
 
 
Consequently the x component is )( xxta −−η and y component is )( yyta −−η .  Hence the 
solution is  
 
 
 
 

QED 
 
XX.2 Repulsive Potential 
 
Like the attractive potential, rU must be differentiable throughout the configuration space but 
must decrease when the robot moves away from obstacles.  A suitable candidate is 
 
 
 
 
 
 
 
Here  
 
 
 
 
 
 

)(
2

2 qU t
a

a ρ
η

= (4) 

22 )()( yyxx ttt −+−=ρ (5) 

 
aη : attractive potential constant 

),( tt yx : target location  

tρ : distance to target 

{ }22 )()(
2
1 yyxx

yx
U ttaaq −+−








∂
∂

∂
∂

=∇ η  









−
−

=∇
)(
)(

ta

ta
aq yy

xx
U

η
η

(6)
















−=

0

11
2
1

)(

2

o
r

r qU ρρ
η  oρρ ≤  

oρρ >
(7) 

22 )()( xxyy oo −+−=ρ (8) 



Lecture XX                                           

 3 

 
Where 
 
 
 
 
 
 
 
 
Problem XX.2: Derive the gradient for the repulsive field defined by (7) and (8) 
 
Solution XX.2: Equations (7) and (8) combine to yield the following repulsive field 
 
 
 
 
 
 
 
 
 
 
 
The x component of the gradient can be calculated using the chain rule 
 
 
 
 
First, 
 
 
 
 
 
 
 
 
 
Second, 
 
 
 
 
 
or, substituting with (8) 
 
 
 
 
Combining (9) and (10) yields 
 
 
 
 
 

 
rη : repulsive potential constant 

),( oo yx : obstacle location  
ρ : current robot-to-obstacle distance 

oρ : repulsive force maximum range 

( ) ( )[ ]{ }
( ) ( ){ }222

22/1222

22
1)(

xxyy
xxyy

qU
ooo

ooor

o

o
rr

−+−

−+−−
=







 −
=

ρ
ρη

ρρ
ρρ

η  

( ) ( )[ ]{ } ( ) ( ){ } 122
22/122

22
−

−+−−+−−= xxyyxxyy ooooo
o

r ρ
ρ
η

x
U

x
U rr

∂
∂

∂
∂

=
∂
∂ ρ

ρ
 





















−

∂
∂

=
∂
∂ −

2
1 1

2
1

o
r

rU
ρ

ρη
ρρ

( ) 2
21 1111

ρρυ
ηρ

ρ
ρη 








−−=−








−= −−

o
r

o
r  (9) 

( ) ( ){ } ( ) ( ){ } ( )xxxxyyxxyy
xx ooooo −−+−−=−+−
∂
∂

=
∂
∂ − 2/1222/122ρ

( )
ρ

ρ xx
x

o −−=
∂
∂ (10) 

( )
3

11
ρρρ

η
xx

x
U o

o
r

r −








−=

∂
∂ (11) 



Lecture XX                                           

 4 

Likewise for the y component, one can derive the following equations 
 
 
 
 
Combining (9) and (12) yields 
 
 
 
 
 
 
Finally the gradient can be expressed using (11) and (13) as 
 
 
 
 
 
 
 
 
 
 
 
 

QED 
 
XX.3 Updating Robot Positions 
 
Having derived the gradients of the attractive and attractive fields, the robot position within 
configuration space can be calculated.  Given a sampling time T∆ and (3), the derivative can be 
written as a difference equation for sample i  
 
 
 
 
 
The update rule then becomes 
 
 
 
 
The x components of both (6) and (14) yield an update equation for the robot’s x location 
 
 
 
 
 
 
 
 
  
 
 
 

( )
ρ

ρ yy
y

o −−=
∂
∂ (12) 

( )
3

11
ρρρ

η
yy

y
U o

o
r

r −








−=

∂
∂ (13) 

( )

( )


















−

−









−

−

=∇

o

or

o

or

rq yy

xx

U

ρρρ
η

ρρρ
η

11

11

3

3

 when oρρ ≤









=∇

0
0

rqU  when oρρ >

(14) 

[ ] [ ] ( )raq UU
T
iqiq

+−∇=
∆

−− 1

[ ] [ ] ( )raq UUTiqiq +∇∆−−= 1

[ ] [ ] [ ]( ) [ ]( )

[ ] [ ]( )






−−∆−−








−
−−∆

−−−∆−−=

ta

o

or
ta

xixTix

ixxT
xixTixix

11

111
11 3

η
ρρρ

η
η  when oρρ ≤

when oρρ >
(15) 



Lecture XX                                           

 5 

The  y components of (6) and (14) yield 
 
 
 
 
 
 
 
Where  
 
 
 
 
XX.4 Algorithm Implementation 
 
Potential field based path planning can be implemented in any computer language. Matlab has 
plot commands allowing results to be displayed graphically.   
 
Problem XX.3: Given the robot’s start and target locations are ( ) ( )0,0, =ss yx  and 

( ) ( )7,10, =tt yx  respectively, plan a path using a potential field that avoids an obstacle located 

at ( ) )4,5(, =oo yx .  Let the maximum range for the repulsive field 2=oρ and let the attractive 

and repulsive field constants respectively be 2=aη and 1=rη , and sampling 1.0=∆T . 
 
Solution XX.3:  Graphically, the problem is depicted in the figure below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The M-file potField1_1.m yields the planned path and graphically displays the robot’s 
trajectory.  The code begins by initiating the variables that define the robot’s start and target 
locations and the obstacle location.  A for loop (see below) calculates equations (5), (8), (11), 
(13), (15) and (16).  The variable iterations the maximum times the loop should cycle.  If the 
configuration space is large or T∆ is small, then iterations should be increased to ensure 
the robot reaches the target. 
 
 
 
 
 
 
 
 

[ ] [ ] [ ]( ) [ ]( )

[ ] [ ]( )






−−∆−−








−
−−∆

−−−∆−−=

ta

o

or
ta

yiyTiy

iyyT
yiyTiyiy

11

111
11 3

η
ρρρ

η
η when oρρ ≤

when oρρ >
(16) 

[ ]( ) [ ]( )22 11 −−+−−= ixxiyy ooρ

 

for i=2:iterations  % Run algorithm for 100 sample periods 
  t(i-1) = T*(i-1); % time in seconds 
  % Distance to target (Eqn 5) 
  rhoTarget(i-1) = sqrt(((yTarget-y(i-1))^2) + ((xTarget-x(i-1))^2)); 
  % Distance to an obstacle (Eqn 8) 
  rho(i-1) = sqrt( ((yObstacle-y(i-1))^2) + ((xObstacle-x(i-1))^2) ); 



Lecture XX                                           

 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conceivably, if a real robot were used, motor commands would be issued in the above for loop.  
Graphically, the trajectory traced out by the robot can be depicted; once the loop is completed, 
Matlab plot commands display the path.  This result is given in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QED 
 
Homework: Given the robot’s start and target locations are ( ) ( )0,0, =ss yx  and 

( ) ( )10,10, =tt yx  respectively, plan a path using a potential field that avoids 3 obstacles.  The 

locations are ( ) )5.2,2(, 11 =oo yx , ( ) )5,6(, 22 =oo yx and ( ) ).8,8(, 33 =oo yx Let the maximum 

range for the repulsive fields be 3321 === ooo ρρρ and let the attractive and repulsive field 

constants respectively be 2=aη and 1321 === rrr ηηη , and sampling 1.0=∆T . 
 
 
 
 
 
 

  % Calculate gradient (Eqns 11 and 13) 
  if rho(i-1) < rho0 
   ur_x = nRepulse*(xObstacle-x(i-1))*((1/rho(i-1))-1/rho0))/(rho(i-1)^3); 
   ur_y = nRepulse*(yObstacle-y(i-1))*((1/rho(i-1))-(1/rho0))/(rho(i-1)^3); 
  else 
   ur_x = 0; 
   ur_y = 0; 
  end 
 
  % Calculate new robot position (Eqns 15 and 16) 
  x(i) = x(i-1) - T*nAttract*(x(i-1)-xTarget) - T*ur_x; 
  y(i) = y(i-1) - T*nAttract*(y(i-1)-yTarget) - T*ur_y; 
    
end 

 


