

Drones and Autonomous Systems Laboratory
Ball balancing on the beam class 4

-Final Project

DONGBIN KIM –

Ph.D. Candidate

Mechanical Engineering, University of Nevada, Las Vegas

1. Introduction — Final Project

Copyright: Dongbin Kim.
E-mail: dongbin.kim@unlv.edu
Drones and Autonomous Systems Lab, UNLV

Final Project

- Hardware selection : Camera, Motor, and Beam
- Computer Simulation via MATLAB with integrated information of motors and beam
- 3. Chose the language: C++ or Python
- 4. Select control loop frequency
- 5. Make your own **ball and beam system**

1. Introduction — example

Copyright : Dongbin Kim. E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

(Test Video)

Project Example

- Hardware selection :
 Dynamixel MX-28, Sony playstation camera, foam board
- 2. Chose the language: Python, ROS
- 3. PID Feedback Control.
- 4. 100Hz Control loop

1. Introduction – example

Copyright : Dongbin Kim. E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

Project Example

- Hardware selection :
 Dynamixel MX-28, Sony playstation camera, foam board
- 2. Chose the language: Python, ROS
- 3. PID Feedback Control.
- 4. 100Hz Control loop

(Control system scheme)

1. Introduction — example

Copyright: Dongbin Kim. E-mail: dongbin.kim@unlv.edu Drones and Autonomous Systems Lab, UNLV

Project Example

- Hardware selection: Dynamixel MX-28, Sony playstation camera, foam board
- Chose the language: Python, ROS
- PID Feedback Control. 3.
- 100Hz Control loop

1. Introduction — Final Project

Copyright: Dongbin Kim.
E-mail: dongbin.kim@unlv.edu
Drones and Autonomous Systems Lab, UNLV

Final Project

- Hardware selection : Camera, Motor, and Beam
- Computer Simulation via MATLAB with integrated information of motors and beam
- 3. Chose the language: C++ or Python
- 4. Select control loop frequency
- 5. Make your own **ball and beam system**

2. Hardware Selection - Camera

Copyright : Dongbin Kim. E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

Camera Selection

- Every USB Camera has different frame rate (30Hz ~)
- Different resolution
- Some camera product has own Software Developer's Kit (SDK)
- Compatible to your computer environment

2. Hardware Selection – Motors

Copyright: Dongbin Kim.

E-mail: dongbin.kim@unlv.edu

Propos and Autonomous Systems Lab

Drones and Autonomous Systems Lab, UNLV

(Robotis Dynamixel)

(DC-Motors)

(Step Motors)

Motor Selection

- Every motor requires different approach to control, and connect to the computer environment
- Robotis Dynamixel: Provides velocity, position, and torque control. But latency exists
- DC-Motors: Velocity control by voltage input. Easy and portable
- Step-Motors: Pulse-Width-Modulation(PWM) Control, Position, Velocity control.

2. Hardware Selection – Beams

Copyright : Dongbin Kim.
E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

(Acrylic Beam)

(Paper Beam)

(Steel Beam)

Beams Selection

- You can choose any types of materials to build the beam
- Acrylic
- Steel
- Foam board
- Paper
- Robust enough not to break by the motor torque

3. Language Selection – ROS

Copyright: Dongbin Kim.
E-mail: dongbin.kim@unlv.edu
Drones and Autonomous Systems Lab, UNLV

Language Selection

- ROS: Robot Operating Systems
- Languages: C++ and Python (2.7 only, no 3.x version)
- Choose the language that you feel comfortable with.
- ROS Tutorials should have been done.

4. Control Loop Scheme

Copyright : Dongbin Kim.
E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

Control Loop Scheme

- PID Control, Motor transfer function, Plant is in the loop
- Sampling frequency, control frequency should be defined

Copyright : Dongbin Kim. E-mail : dongbin.kim@unlv.edu

Drones and Autonomous Systems Lab, UNLV

Final Project

- 1. With given hardware, build your own ball and beam systems
- 2. Identify sampling rate, control frequency
- 3. Submit the simulation result via MATLAB (Equation of motions, Transfer Functions of the system, Motor transfer function, Units)
- 4. Submit experimental results, videos

