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MCU-Based Altitude Control

An IR Protocol for Helicopter Commands

This article describes a microcontrolier-based altitude controlier for a
model helicopter. The system uses an IR protocol that sends commands

boom setup that constrains helicopter movement, and a spiking neural
network that monitors sensory inputs and output throttle values.

o wirelessly control a model helicopter’s aftitude and

hovering capabilities, we designed a device that uses
infrared communication and a simple genetic algorithm imple-
mentation. This project culminated from “ECE 4760: Design-
ing with Microcontrollers,” which is a one-semester design
course taught by Cornell

IR LED for distance measurement. Therefore, we attached
the helicopter to a boom and restricted flight to one degree
of freedom {DOF). The IR LED attached to the helicopter con-
stantly emitted a signal and was sensed by a phototransistor

“network placed on the ground under the boom. We used a

neural network to calculate

University professor Bruce
Land. The project com-
bined our interests in con-
trol systems and machine
fearning and demonstrated
our acquired knowledge of
microcontroller, hardware,
and software design.

Using wireless control,
we wanted the helicopter
to quickly rise to a given
altitude and steadily hover
at that position. Another
goal was to have the heli-
copter perfect this task in
as few trials as possible.
We initially intended to fly
the helicopter without any
constrictions, but we found
it difficult to develop con-
trol for all degrees of free-
dom within a short amount
of time and with limited
resources. Additionally, the
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the helicopter's throttle
based on distance measured
by the phototransistors. We
used a genetic algorithm to
evolve the network until we
achieved a quick rise and
steady hover.

SYSTEM DESIGN

The learning process was
implemented as a series of
10-s "runs.” During each run,
the helicopter started on the
ground, rose at a speed
determined by the neural
network and sent by an IR
LED, safely dropped, and
landed on the ground. The
particular neural network
used for the run was evaluat-
ed at the end of a run. If the
run was considered good, the
network parameters were
stored in the system for fur-

helicopter became unbal-
gle “run.” The ISR acc

F:gure 1—This is the program’s high-level functlonahty The red box outlines a

ther evolution and a different
Inaded for the
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Figure 2—The experimental setup is shown as a series of points. Starting at
Point A, the experiment’s goal is to fly the helicopter to Point C in the short-
est time and tc achieve a steady hover around Point C of distance Ar.

next run. Runs were executed until we were satisfied with the
helicopter’s speed and hover. Figure 1 shows the run structure
breakdown.

experimenting with different neural network configurations in
an evolutionary manner, Figure 2 shows the experiment’s setup.
Because of its balance of lightness and rigidity, we used balsa
wood to attach the helicopter to a woeden boom. Ground posi-
tion is referred to as Point A. The goal was fo fly the helicopter
to Point C in the shortest amount of time and to have the heli-
copter steadily hover. Point B is a midpoint and Point D is the
maximum height the helicopter can achieve before the micro-
controller shut down the current run. The maximum point is
important because the helicopter loses stability past this point
and shoots backward.

A run began with the helicopter at Point A. Every 120 ps,
the helicopter’s height was calcuiated through phototransistor
readings and the microcontroller emitted a new throttle value.
Throttle values were calculated based on neural-network spik-
ing. This will be further described in the software section. The
particular network was assigned a fitness value based on how
well it accomplished the goal. The network’s fithess value
started at O for a particular run and accumulated every 120 us
depending on the helicopter’s height. The helicopter accumu-
lated higher fitness values as it got closer to Point C (i.e., the
target point). The concept was to reward the network for
quickly flying the helicopter to Point C and for keeping the hei-
icopter closely hovering around Point C. Since every run is
capped at 10 s, highest fitness values went to networks that
guickly and steadily flew the helicopter to Point C. The exact
fitness function used for our experiments is:

+0 Point A to Point B

+1 Point B to Point %

+2 %EOC — 2Ar

+10C £ 2Ar

+20C + Ar

-5>C+2Ar
0+ end Point D

Fitness =

Since the microcontrolier couldn’t directly read the hefi-
copter’s height, we used a look-up table to calculate the height

—pased-on-phototransistor-readings—The IR 1-EB-attached-to-the—smair-breadboard-behind-the-wings—The-microcontrofter-is-offscreen:
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helicopter constantly emitted a signal that was picked up by as

phototransistor network located directly underneath the boom.
When the LED was directly on top of the phototransistor, the
voitage was close to O V. As the helicopter travelied farther
away from the ground, the voltage increased up to a maximum
of V. or 5V for our circuit. By manually bringing the helicop-
ter to points between Point A and Point D, voltages could be
associated with heights.

One neural network was evaluated per run. After 10 s, the
microcontroller initiated an ending sequence that brought the
helicopter down from any position by gradually decreasing the
throttle. Once the helicopter reached Point A, the microcon-
troller compared the current network’s fitness to a six-network
population. If the current network has a higher fitness than any
network in the population it replaced the weakest network. For

mutated in several areas that will be described in further detait
in the software section.

HARDWARE

We used a Syma S107R5 heficopter attached to a boom made
of balsa wood (see Photo 1). The boom was hinged to a small
piece of wood. A thin needle was inserted through the hinge and
the balsa wood to keep the boom in place. The wood was man-
ually clamped down, but a mechanical damp could be used to
easily clamp it down. This system’s purpose was to reduce the
DOF to 1 degree. Due to time and financial constraints, we could
not control the helicopter in 6 DOF. Using a boom enabled us to
focus on altitude control and develop the leaming algorithm.

We attached an IR LED to the helicopter to attain height
information. The helicopter came equipped with a blue/red LED
attached near the nose. We disassemnbled the frame and dis-
connected the LED. Then we connected a Lite-On Technology
LTE-4208 IR LED in series with a current-limiting resistor. The
on-board 4.2-V battery would provide too much current if
directly connected across the LED. We connected a 100-Q
resistor. This would ideally result in 42 mA through the IR LEB,
which would provide great range. However, the helicopter
wauld not register commands with this configuration because
the LED and the on-board phototranmstor {which reads
remote-control commands) overloaded the\ battery. We
increased the resistor to 330 Q, which resulted in 12.7 mA
through the IR LED. This reduced the range but corrected the

Photo 1—The helicopter is attached to a boom and placed on top of &
whiteboard containing & phototransistor network. The command maodule is a
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pEEE Tek L. @5tp  dPosi17.20ms  SAVE/REC vary the voltage applied to the circuit from 0 to V, resulting in

E LA fast IR puises, We used timer-driven interrupts to send IR puls-
i es in packets the helicopter could register. The on-board photo-
. S transistor and electronics enable the helicopter to decode the
T HH {'_—' PRINT packets and translate them into flight parameters.

Coa Our phototransistor network consisted of eight LTR-4206Es
| ! ‘ arranged on a whiteboard in a 2 x 4 rectangular fashion. Each
| phototransistor only had a 20° viewing angle. We were unable

A to attain better phototransistors due to time and financial con-
! | | ok straints. To ensure the phototransistors could detect the IR from
o the helicopter at all times, the network was modified based on
N 3 About adjusted heights. Adjustment included phototransistor angling
AR N D Save Al and network size. Each phototransistor was connected to a sin-
CH1 1.00¥  CH2 5.00¢  MG500ms CHZ £ 5.23m¥¢ gle ADC pin on the microcontroller that can measure a voltage
' 16~Apr-120356  <10H:z from 0 to 5 V in 0.039-V increments. Int addition, a 20-kQ cur-
e . der-bits.and 32 bits_rent-limiting resistor was placed in serfes with each phototran-
representing flight parameters. The shorter peaks are Off bits and the higher sistor (see Figure 3).
peaks are On bits.
_ EVOLUTIONARY ALGORITHM
helicopter operation. The IR LED's maximum readable distance, According to Y. H. Said in her article, "On Genetic Algorithms
as read by a Lite-On Technology LTR-4206E phototransistor,  and Their Applications,” an evolutionary algorithm (EA) is a
was 25 cm. The minimum distance was 2 crn. We soldered the  global optimization search that operates on the principles of
LED and resistor to the on-board battery’s positive and negative  natural selection.!! The algorithm’s goal is to find a solution that
leads: s maximizes.a-problem’s. given.fitness.function.-The .EA_starts by.. -
To controt the helicopter flight through the microcontroller, we  instantiating several solutions or chromosomes. Each of these -
reverse engineered the command protocol from the factory- s evaluated by a fitness function based on how well it solves a
supplied remote control with help from the Couch Sprout blog.  particular problem. Chromosomes are randomly mutated and
We set up a single LTR-4206F to read the command from the  retested. If they perform better than any chromosome in the
remote control. We found commands were organized in packets  current population, they replace the warst chrorrosome. After a
spaced 120 ms apart. Each packet contained a header, 4 bytes  round of mutations and checks, the best chromosomes repro-
of information, and a stop bit. Photo 2 shows a single packeton  duce and move on to the next generation. The EA performs sev-
an oscilloscope screen. Moving forward, “low” refers to a low  eral iterations until the search converges onto a solution and fit-
voltage, and “high” refers to a high voltage. The header consists  ness values barely increase across generations.
of 2-ms low and 2-ms high. Next, each bit can take one of two We used an EA for this project to develop the best helicopter
values. A 1 is represented by 300-us low and 700-ps high. A0  flight. We used an implementation first presented by D. Flore-
is represented by 300-ps low and 300-ps high. A byte is com- ano, et al in their article, “Evolutionary Bits'n'Spikes."™ This
- posed of 8 bits. By changing cne command at a time '
from the remote, we correlated spéciﬁc commands to
bytes. In order from first to last, the bytes represent e m"""
yaw, piteh, throttle, and yaw correction. Full yaw to the i el I G m
right is represented by 0, while 127 represents full yaw 1w o LT E T : e
to the left. Full pitch up is represented by 0, while 127 1 e, %Mﬁ - J:f’—ﬁ:—“m _
represents full pitch down. Throttie takes values from 0 ¢ ey el woehr [ How farle | ool
to 127. The yaw correction takes the same values as = ;&“ [——ifﬁn’* %«:T—r dosh
yaw and applies extra yaw. At the end of 4 bytes, a ; 3 = _;;_3; @ L m
300-ps stop bit is issued. £ e o &pEn T
Our test phototransistor could not detect a carrier ) [ f:i"‘-; I
wave that was issued before every bit. Every bit's low = L
portion oscillates from 0 to 5 V at 76.973 kHz. If this no
carrier is not inserted, the helicopters phototransistor """“'”":‘“ — - [
o and circuitry do not register the command and do not i‘“ g%“‘ g%“ gig“ 5’? ;’“ Em
N operate. . 2 z ‘ v
a Our IR command includes three LTE-4208 IR LEDs in ;qi’:n.mqm %ﬁ‘m%mm%{*&m,[J]ﬁm%ﬁm, Brects
& geries with a 100-Q, current-fimiting resistor. We used T
-  three LEDs to increase signal intensity, angle, and range =
R (see Figue 3. Tosend nformation o the same rateas - Fur 31 o s e 0 o, S
; the helicopter remote, we used an Atmel ATmegat44 intensity, angle, and‘ range. We placged a 20-i<§2, current-limiting resistor in igr?;gsnv?ith
; microcontroller’s fast PWM. feature, which.enabled us to . sach phototransistor
2 4 CIRCUTT CELLAR® * www.cCircuitcellar.com




g algorithm uses a spiking neural net-
work to take altitude information as
sensory input and output throttle as
motor output. Neurons can be sim-
plisticalty described as single com-
partments with associated mem-
brane voltages. Certain neurons are
respensible for sensing input and
relaying this information through a
network of connections to terminal
neurons that can determine maotor
output. The relay process occurs
through “spikes” or extremely fast

O
O

O
O

Input Qutput
O O~
Sensory O Mator

neurons neurons

Figure 4—Here is a simple spiking neural network. Input
is provided to the sensory neurons, which have connec-

tions to motor neurons. Motor neurons also have various
connections and signs as shown by blue {excitatory) and
black (inhibitory). Output is extracted from motor neuron

voltage swings, which occur when a
neuron’s membrane potential passes
a threshold. The terminal neuron's

spikes.

direction is determined by the input

increase throttle. When the helicopte
reaches peak height, fewer senson
neurons spike, which results in =
throttle decrease. The proper net
work configuration will result in the

best flight. However, this configura-

tion depends on the experimenta

setup and noise factors. The entire |
neural network can be described ir
17 bytes: 1 byte for motor neuror |
signs (sensory neurons are kept exci-
tatory), 8 bytes for sensory connec-
tions, and another 8 bytes for motor |

connections.
The EA produces a random, initia

population of six networks or chromo-

membrane potentials are affected by
presynaptic neurcns (i.e., those that

connect to the terminal neuron). The

potential can increase if the presynaptic
neuron is excitatory or decrease if the
presynaptic neuron is inhibitory. The
connections between presynaptic and
terminal neurons can be configured to
enable the motor output to react to sen-
sory input as desired. This is the basic
principle behind learning motor activity
in biological systems.

Qur neural network includes three
major components. First, a layer of sen-
sory neurons spikes is based on altitude
information. Second, these spikes are
relayed through a network of connections.
Third, the connections synapse onto a
motor neurons layer. Some of the motar

neurons also have connections to other -

motor neurons. Motor neurons spike
based on the spiking through the network
of connections. Output spikes define the
helicopter’s throttle output. Fgure 4
shows an example of this system.

DIGITAL IMPLEMENTATION

You can use an 8-bit microcontroller
to efficiently code the spiking neural
network. A single neuron can be repre-
sented by a membrane potential,
threshold, sign, spike output, and con-
nections. A few attributes describe a
neuron‘s behavior over time or cycles. A
neuron Is either spiking (represented by
a 1) or not spiking (represented by a 0).
Once it has spiked, & neuron cannot
spike for one cycle. A neuron can
synapse onto other neurcns. A neuron’s

~membrane potential can increase or

decrease depending on spiking contribu-
tions from input neurons. The change

neurons’ sign. For example, if a neuron
has three excitatory inputs and three
inhibitory inputs and all inputs spike,
then that neuron’s membrane potential
will increase by 1. A neuron can spike if
its membrane potential rises above a
threshold, which we set at 5 £+ a random
number between -2 and 2. The random
number ensures the system does not
fall into locked oscillations. Finally, a
leakage of 1 is always subtracted from a
neuron on every cycle. This models the
leakage biological phenomenon.

Our project utilizes eight sensory and
eight motor neurons. The ADC converts
all voltages from the phototransistor to
digital values and finds the minimum. It
is expected that this voltage mast accu-
rately reflects the helicopter height. The
others might not be in the helicopter's
field of view. The minimum voltage is
represented by an 8-bit number and
each sensory neuron corresponds to cne
of those bits. Connections between a

~single-sensory neuron and all motor

neurons are represented by a single
byte. Each bit i'a 1 for a connection or
0 for no connection. Therefore, connec-
tions between all sensory neurons and
all motor neurons can be represented by
8 bytes. Motor neurons can also connect
to each other. Another 8 bytes are used
for these connections. Finally, one motor
neuron output is used to increase throt-
tle by a set amount and another neuron
is used to decrease throttle. The other
motor neurons are used for intermedi-
ate connections.

When the helicopter is close to the
ground, ait sensory neurons spike, which
results in many motor output spikes. For
the proper configuration, this will

somes. These networks are tested, -

mutated, and repreduced through severa

algorithm iterations, Mutation is done in ¢
random manner. A single bit of the sigr -
byte and both connection bytes is togglec
at a time. A single run (as described in the
System Design section) tests a single net- |
work and preduces a fitness value thai
evaluates that network against the cur- -
rent population. If the network is better :
than any population netwaork, the superi-
or network replaces the inferior one. -

Mutations are performed until the user ic
satisfied with the altitude control.

RANDOM NUMBERS

We used a 32-bit linear feedback shift
register as a random-number generator.
A 32-bit register was instantiated anc

bits 27 and 30 were XORed to produce .

bit 0. Then the register was shifted left,
which produced a random number with 2
repeat time that lasted much longer thar
any experiment. This configuration pro-
duces high-quality uncorrelated randon
numbers,

IR PROTOCOL

Time-driven interrupts from the
ATmegab44 are used to toggle PB3 fo the
IR command module (as described in the
Hardware section). For this project, yaw
and pitch are kept constant. Throttle is
taken from the spiking neural network’s
output. Every 120 ps, a 32-bit command
is built, This command represents the
yaw, pitch, throttle, and yaw correction,
in that order. Interrupts occur at 100-ps
periods then toggle V. according to the
protocol presented in the Hardware sec-
tion. Another 76.973-kHz interrupt is
used to generate the carrier wave.
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Figure 5—This graph shows the population’s best fithess across each run.
Individuals quickly evolved in the experiment’s beginning and slowed down
near the end.

LIFTING OFF

A robust learning and evolving system was develope
implement altitude control from a microcontroller to a toy
copter. This system involved an IR protocol execution to
commands to the helicopter, a phototransistor network ton
ure altitude, a boom setup to constrain helicopter moveme
1 DOF, a spiking neural network to take sensory inputs anc
put throttle values, and an evolutionary search to find the
neural-network configuration. The search converged into a
tion that quickly flew the helicopter from the ground to a de |
point and kept it at a steady 10-s hover. Although the sy |
exhibited several false positives and negatives throughou -
search process, the microcontroller overcame them by te
enough chromosomes to find the proper configuration. F
work should focus on improving experiment aspects, sur
using wider angle phototransistors and a more reliable boc

TAKING FLIGHT

The system quickly evolved high-fithess chromoscmes in the
first 20 runs (see Figure 5). It took more runs to discover bet-
ter chromosomes as the system became adept at flying the hel-
icopter according to the goal. Many chromosomes resulted in
the helicopter flying too high. These were avoided later in the
experiment as they resulted in 0 fitness. Chromosomes that
didn't raise the helicopter above ground resulted in 0 fitness and
were also avoided. The average population fitness sampled
every five runs (see Figure 6). A high slope was exhibited in the
beginning and it tapered off near the end of the experiment.

The' phototransistor network was susceptible to slight
changes in movement because the phototransistors only had a
20° viewing angle. The helicopter frequently rotated or shifted
a small amount at higher altitudes. This caused the IR LED fo
leave the phototransistor’s field of view. The system interpret-
ed this as a bad run, which resulted in a false negative for a
chromosome that may have had a high fithess. The system also
generated several false positives for chromosomes that rose to
low altitudes but evaded the phototransistors’ viewing angle
just enough to trick the sensors into thinking the helicopter was
at the right altitude. These chromosomes generated high fitness
values for bad runs and severely hampered the network’s evo-
lutionary capability. However, enough mutations and runs
ensured that false negatives and positives did not impede the
system’s end goal.

Averaga Population Fitness
80D, T Y T T T

500

Flinoss

300

601

100-

P . L i : . L
L] 2 4 [} [ 10 12 14 18
Every 5 Runs

Figure 6—The average population fitness exhibits a high slope near the
beginning and a low slope near the end. The average was taken every five
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