
Control of a Servo using PIC 16F84 and an
Ultrasonic Sensor
One basic application of PIC microcontrollers is their use to control motion based on input from a
sensor. This is applicable to many different fields, from manufacturing to aeronautics to robotics. This
tutorial will demonstrate the control of a Futaba servo motor using a PIC 16F84 microcontroller and
input from a Devantech SRF04 ultrasonic sensor.

MOTIVATION AND AUDIENCE

The focus of this tutorial is to demonstrate a method for receiving input from an SRF04 ultrasonic
sensor and translating it into a control signal for a servo motor. This tutorial will teach you:

• What a PWM signal is.
• How to write code to control and receive input from a SRF04 ultrasonic sensor.
• How to write code to control a Futaba servo motor.

To do this, it is assumed that you already:

• Have completed "A Fast Track to PIC Programming".

The rest of the tutorial is presented as follows:

• Parts List and Sources
• Construction
• Programming
• Final Words

PARTS LIST AND SOURCES

In order to complete this tutorial you must have the circuit from the tutorial "A Fast Track to PIC
Programming" (minus the dip switches and resistor LED circuits). The only additional parts you will
require are:

TABLE 1

PART DESCRIPTION VENDOR PART PRICE (2003) QTY

SRF04 Ultrasonic Sensor Acroname R93-SRF04 33.00 1

Futaba Servo Motor RC Hobby Center FUTM0031 21.99 1

This sensor was chosen because of its compactness and the wide range over which it can measure. It
is also easily interfaceable with microcontrollers. The servo chosen is a standard servo, however, any
servo that operates off of PWM input will do (timing may vary).

To construct the circuit, you will also need:

• a soldering iron with a fine point
• materials for soldering (solder, flux, etc.)
• small gauge wire
• wire strippers

• multimeter
• DC power supply

The items listed above can all be purchased from an electronics store such as Radio Shack. Some
hardware such as Home Depot carry tools like wire strippers and multimeters.

CONSTRUCTION

The circuit used to used to communicate with the PIC is the same circuit used from the afore
mentioned tutorial with different inputs and outputs. This time input will be coming from the sensor, and
output will be going to the sensor to control it and to the servo. To achieve this, the devices should be
wire as follows:

Figure 1 Figure 2

Port A0 (Fig 1 - Pin 17) <=WIRED TO=> Output from sensor (Fig 2 - Output)
Port B3 (Fig 1 - Pin 9) <=WIRED TO=> Input to sensor (Fig 2 - Input)
Port B0 (Fig 1 - Pin 6) <=WIRED TO=> Command to servo (white wire)

This circuit will allow us to receive input from port A of the PIC and send output to port B. The ports
were chosen to seperate inputs and outputs and to facilitate the insertion of other sensors. Different
ports could be used, however, the code must be changed accordingly.

PROGRAMMING

Figure 3

Figure 3 above shows the command signal that must be generated to begin a reading and the resulting
output from the sensor. To initialize a reading, the command to the sensor must be held low, and then
brought high for a minimum of 10 microsec. The pulse is generated on the falling edge of the command
signal. After the command is given, the microcontroller must wait until it sees the output from the
sensor go high. As soon as the output goes high, the microcontroller begins recording the lenth of the
output signal until it sees the output go low again.

Figure 4

Control of the servo is achieved by generating a PWM signal. A PWM signal is simply a pulse of
varying length that can be translated into a position requested of the servo. This is illustrated in Figure
4. Generally, the length of the pulse for a servo varies between 1 msec and 2 msec over a 20 msec
period.

The following code requests a reading from the sensor, receives the reading, and transforms the
reading into a signal that is outputted to the servo.

sncserv.asm

; FILE: sncserv.asm

; AUTH: Keith Sevcik
; DATE: 1/24/03
; DESC:
; NOTE: Tested on PIC16F84-04/P
;

;--
; cpu equates (memory map)

list p=16f84
radix hex

;--

status equ 0x03 ; status equate
porta equ 0x05 ; port a equate
portb equ 0x06 ; port b equate
PWM equ 0x0c ; PWM signal length
count equ 0x0d ; general register
temp equ 0x0e ; general register
loop equ 0x0f ; general register

;---

c equ 0 ; status bit to check after subtraction

;---
; porta0 = input from sensor
; portb3 = command to sensor
; portb0 = command to servo

org 0x000

start movlw 0x00 ; load W with 0x00 make port B output
tris portb ; port B is outputs
movlw 0xFF ; load W with 0xFF make port A input
tris porta ; port A is inputs
movlw 0x00 ; load W with 0x00 to set intial value of B
movwf portb ; set port b outputs to low

main clrf count ; clear count
clrf PWM ; clear PWM
bsf portb,3 ; tell sensor to make reading
movlw d'4' ; 4*3=12 clock delay
movwf count
call delay ; delay
bcf portb,3 ; end sensor command signal
movlw d'5' ; set the delay for measuring the output
movwf count

A0LOW btfss porta,0 ; if the output has gone high, skip the next instruction
goto A0LOW ; else check again

A0HIGH incf PWM ; increment the length of the PWM signal
call delay ; delay for the count assigned above
nop
btfsc porta,0 ; check to see if the output is still high
goto A0HIGH ; if it is, repeat
movf PWM,w ; move PWM to w
sublw d'200' ; subtract PWM cycle from 200 (2 msec)
btfsc status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip1
movlw d'200' ; else set the max PWM length to 200
movwf PWM

skip1 movf PWM,w ; move PWM to w
sublw d'20' ; subtract PWM cycle from 200 (2 msec)
btfss status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip2
movlw d'20' ; else set the min PWM length to 20

movwf PWM
skip2 movlw d'1' ; set the delay for generating the PWM

movwf count
bsf portb,0 ; start the PWM pulse

LoopPWM call delay
nop
nop
nop
decfsz PWM ; decrement the PWM length
goto LoopPWM ; as long as PWM is greater than 0, loop
bcf portb,0 ; when done looping, stop the pulse
movlw d'15' ; set the counter for generating the rest of the PWM signal
movwf loop

del15 movlw d'255' ; set the delay counter
movwf count
call delay
decfsz loop
goto del15
goto main

;--

delay movf count,w ; delay loop
movwf temp

del decfsz temp ; 3 clock cycles per delay loop
goto del
return

;--

end

;--
; at burn time, select:
; memory uprotected
; watchdog timer disabled
; standard crystal (4 MHz)
; power-up timer on

HEADER AND EQUATES

The first portion of code is the header and register equates. For more information about the meaning of
the header see the previous tutorial.

list p=16f84
radix hex

;--

status equ 0x03 ; status equate
porta equ 0x05 ; port a equate
portb equ 0x06 ; port b equate
PWM equ 0x0c ; PWM signal length
count equ 0x0d ; general register
temp equ 0x0e ; general register
loop equ 0x0f ; general register

;---

c equ 0 ; status bit to check after subtraction

;---
; porta0 = input from sensor
; portb3 = command to sensor
; portb0 = command to servo

org 0x000

The only equate of signifficance here is PWM. This register will be used to store the length of the PWM
signal to be generated.

INSTRUCTIONS

The next portion of code contains the actual instructions that tell the PIC what to do.

start movlw 0x00 ; load W with 0x00 make port B output
tris portb ; port B is outputs
movlw 0xFF ; load W with 0xFF make port A input
tris porta ; port A is inputs
movlw 0x00 ; load W with 0x00 to set intial value of B
movwf portb ; set port b outputs to low

These lines set up port A as inputs and port B as outputs. All outputs are then set to low.

main clrf count ; clear count
clrf PWM ; clear PWM
bsf portb,3 ; tell sensor to make reading
movlw d'4' ; 4*3=12 clock delay
movwf count
call delay ; delay
bcf portb,3 ; end sensor command signal

After setting up the ports, the main loop is begun. At the beginning of the main loop, the count and
PWM registers are cleared. The command pulse is then sent to the sensor.

movlw d'5' ; set the delay for measuring the output
movwf count

A0LOW btfss porta,0 ; if the output has gone high, skip the next instruction
goto A0LOW ; else check again

The next bit of code sets up the counter for the next operation. This counter will add a delay to the
process of measuring the output from the sensor. This delay will scale down the output from the
sensor. The following two lines of code detect when the output from the sensor goes high.

A0HIGH incf PWM ; increment the length of the PWM signal
call delay ; delay for the count assigned above
nop
btfsc porta,0 ; check to see if the output is still high
goto A0HIGH ; if it is, repeat

This loop increments the PWM register, delays, and then loops again as long as the output from the
sensor is high.

movf PWM,w ; move PWM to w
sublw d'200' ; subtract PWM cycle from 200 (2 msec)
btfsc status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip1
movlw d'200' ; else set the max PWM length to 200
movwf PWM

skip1 movf PWM,w ; move PWM to w
sublw d'20' ; subtract PWM cycle from 200 (2 msec)
btfss status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip2

movlw d'20' ; else set the min PWM length to 20
movwf PWM

These lines set a max and min value for the PWM signal to prevent it from damaging the servo. It
subtracts a value of 200 and 20 from the PWM signal and tests to see if there wasnt or was a carry,
respectively. If the PWM length fails either test, it is set to either the max or min and the program
continues.

skip2 movlw d'1' ; set the delay for generating the PWM
movwf count
bsf portb,0 ; start the PWM pulse

LoopPWM call delay
nop
nop
nop
decfsz PWM ; decrement the PWM length
goto LoopPWM ; as long as PWM is greater than 0, loop
bcf portb,0 ; when done looping, stop the pulse

This code actually generates the PWM pulse. A delay length is stored in the count register. The output
to the sensor is then set high. This brins the program into a loop that decrements the PWM register,
delays, and then continues to loop so long as the value of the PWM register is greater than 0. After
completing the loop, the output to the servo is brought low again.

movlw d'15' ; set the counter for generating the rest of the PWM signal
movwf loop

del15 movlw d'255' ; set the delay counter
movwf count
call delay
decfsz loop
goto del15
goto main

This final bit of code generates the remainder of the PWM signal. It consists of a delay nested inside a
loop to complete the 20 msec period. When the loop has finished, the entire program is repeated.

FINAL WORDS

After completing this tutorial you should be familiar with the SRF04 ultrasonic sensor, PWM control of a
servo and be able to write code for a PIC 16F84 to control a servo based on input from an ultrasonic
sensor.

If you have questions about this tutorial you can email me at Keithicus@drexel.edu.

