
Designing Aerial Robot Sensor Suites to Account for Obscurants

Keith Sevcik and Paul Oh*

Drexel University, Philadelphia PA

Email: kws23@drexel.edu and paul@coe.drexel.edu

Abstract— Recent events have proven the utility of aerial
robots in search and rescue and military operations performed
in near-Earth environments. However, autonomy in such en-
vironments is still limited by the robot’s ability to perform
collision avoidance. Real time, high fidelity maps can be utilized
to assist the robot in performing collision avoidance. This paper
explores the use of a laser range finder to accomplish real
time map building in the presence of obscurants. Experiments
were conducted to determine the probabilistic models of the
sensor in the presence of rain and fog. These models are then
utilized to map obstacles and terrain features in the presence
of obscurants. Preliminary results show the implementation of
these methods in an aerial vehicle testing facility.

I. INTRODUCTION

Recent events have driven the need to develop robotic

systems to assist in missions such as reconnaissance, search-

and-rescue, and payload delivery. Towards these ends, the

Drexel Autonomous Systems Lab is investigating the use of

heterogeneous robotic teams comprised of unmanned ground

vehicles (UGVs) and unmanned aerial vehicles (UAVs).

UAVs provide an “eye in the sky”, identifying points of

interest and guiding UGVs operating on the ground.

The environments these robots encounter are rugged and

hazardous for a human to traverse. Such near-Earth envi-

ronments are challenging for robots, as well. GPS signals

become degraded around tall buildings and trees. Obstacles

such as rubble or wreckage would not show up on existing

maps. UAVs provide a means around these shortcomings. An

aerial vehicle flying through the scene can map the terrain,

providing ingress and egress routes to operatives on the

ground. This demands a sensor suite capable of detecting

and mapping obstacles in near-Earth environments.

The design requirements for these sensors have been

identified by the United States Defense Advanced Research

Projects Agency (DARPA) and Future Combat Systems

(FCS). The Organic Air Vehicle (OAV) and Class II programs

both focused on building UAVs to fly missions in areas such

as urban terrain and forests. A few fundamental requirements

for sensor suites arose from these projects.

The range of the sensor must be chosen to give the craft

time to perform collision avoidance. The required range and

field of view scale with the flight speed and the dynamics

of the vehicle. From previous experience detailed in [1], we

found that most UAVs need at least 1 second to react.
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Fig. 1. Systems Integrated Sensor Test Rig (SISTR). SISTR permits
real hardware to be tested in simulated urban environments and disaster
scenarios. Environmental effects such as varied lighting, rain, and fog can
be introduced in a controlled and repeatable fashion.

The sensor must also detect a wide range of obstacles.

In urban terrain, object size and composition can vary

drastically, from buildings to telephone poles to thin wires

and clothes lines. In particular, sparse objects such as trees

and bushes are troublesome to detect and avoid.

The UAV will also encounter a variety of environmental

and weather conditions. Lighting conditions are often un-

structured and unpredictable. The vehicle could move from

the shade of a building to direct sunlight in fractions of a

second. Smoke from fires or dust from down-wash can blind

a UAVs sensor suite. Environmental factors such as rain and

fog can further hinder performance. Providing a sensor suite

that meets these criteria is essential to fully leveraging the

capability of UAVs in near-Earth environments.

As an FCS One Team member, our experiences in sensor

suite design revealed that scanning laser range finders are

the best suited sensor for performing obstacle detection

and collision avoidance. Preliminary experiments against the

criteria stated above showed them to out perform common

sensors such as sonar, computer vision and optic flow.

The biggest attraction of these sensors is their high fidelity

and wide field of view. Their range is comparable if not better

than many traditional sensors. Laser range finders are also

able to clearly detect many different objects including sparse
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objects. Additionally, they are robust to varied lighting con-

ditions, encountering difficulties only in extreme conditions

such as direct sunlight measuring over 10,000 lux.

The major drawback to laser range finders is their sen-

sitivity to obscurants present in the air. Rain can cause

reflections that appear to be thin obstacles. Particulate matter

such as fog, smoke and dust diffuse the laser beam, making

some obstacles undetectable. This detriment can hinder the

operational capabilities of the UAV.

Current applications have demonstrated the effectiveness

of UAVs in relatively “clear skies”. Search and rescue

operations supporting hurricane Katrina disaster relief were

performed during good weather after the hurricane had

passed [2]. Similarly, the mapping of the 2006 Esperanza

fire in California was executed by UAVs flying at 43,000 ft.

high above the smoke plume [3]. While the role these UAVs

played was instrumental in aiding the mitigation effort, our

interest is in providing first responders with UAVs that can

be deployed in the harsh environments they encounter. For

UAVs to perform obstacle detection in real world scenarios,

the problem of handling obscurants must be addressed.

Previous work has demonstrated the use of scanning

laser range finders for obstacle detection in the absence

of obscurants. In [4], a laser range finder mounted to a

ground based robot was used to map the inside of a museum

and subsequently perform path planning. Their use was also

demonstrated outdoors during the DARPA Grand Challenge.

Both [5] and [6] show how scanning laser range finders can

be used to guide an autonomous ground robot through the

desert. For aerial robots, [7] shows the use of laser range

finders for terrain mapping and pose estimation. Likewise,

[8] shows the use of laser scanners to perform mapping for

guiding helicopters through near Earth environments at high

speeds. None of these included modeling for obscurants.

Extensive work has been done to model the effect of

obscurants. [9] presents a model for the effect of different

kinds of smoke and various other obscurants. Such models

can be used to correct for obscurants in laser range measure-

ments. However, there has been relatively little work towards

modeling and correcting for these effects in simultaneous

localization and mapping (SLAM) problems.

This paper examines the effects of obscurants on mapping

with SLAM techniques. A Hokuyo laser range finder is

characterized for varying rain and fog conditions. The sensor

model with and without obscurants was determined from

these experiments. Measurements were then taken inside a

UAV testing facility. The sensor was scanned through a mock

urban environment to mimic flight through cluttered terrain.

Inside the test space, environmental disturbances were intro-

duced in a controlled fashion. Specific rain flow rates and

fog densities were generated to determine the effect on 3D

mapping. A SLAM technique was employed to recover the

map under these noisy conditions. The robustness of this

technique was tested versus the presence of obscurants.

Section II describes SISTR, a Systems Integrated Sensor

Test Rig. Section III discusses how the sensor model is

characterized for varying fog and rain conditions. The SLAM

Fig. 2. Rain machine utilized for sensor testing. The machine can generate
an 8ft wide by 2ft deep by 10ft tall sheet of rain with flow rates up to .2
in/min.

algorithm utilized is presented in section IV. The results of

applying the SLAM algorithm under obscured conditions are

shown in section V. Conclusions are drawn in section VI.

Finally, future work is discussed in section VII.

II. SISTR

Assessment of the laser range finder’s performance in

disaster scenarios required a testing facility capable of re-

peatably and controllably simulating realistic disaster envi-

ronments. SISTR, shown in Fig. 1, is a National Science

Foundation funded UAV testing facility that provides this

capability. SISTR contains a mock urban environment con-

structed at full scale with actual materials such as plywood,

brick and cinder blocks. The environment can be augmented

and reconfigured with other features such as poles, wires and

trees to test robustness to varying obstacles.

As described in [10], the facility is surrounded by a six

degree-of-freedom computer controlled gantry. Using the

math model that describes the flight dynamics of an aircraft,

the gantry can be programmed to mimic the flight of a

slow flying vehicle. UAVs and UAV sensor suites can be

attached to the end effector of the gantry to provide real-time

sensor feedback for testing obstacle detection and collision

avoidance algorithms.

One unique quality of SISTR is its ability to simulate

weather conditions and other disturbances. With test rigs

constructed inside the facility, sunlight, rain, fog and other

effects can be generated in a controlled, repeatable manner.

When determining what conditions to simulate and what

standards to test UAVs against, we turned to the US military
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Fig. 3. The Hokuyo URG-04LX used for testing. Its small size (50mm
x 50mm x 70mm) and light weight (160g) make it an attractive sensor for
aerial platforms.

standards for all weather performance [11]. All military

vehicles are held to these standards, including UAVs.

Using this standard as a guide, a custom built rain machine

shown in fig. 2 was constructed. This machine can be used

to produce a “sheet” of rain 8ft wide by 2ft deep by 10ft

tall. This sheet of rain can be introduced between the sensor

and the visible field. The sensor therefore looks through the

sheet of rain when taking measurements.

Per military spec, the machine was designed to generate

flow rates between .011 in/min and .2 in/min with drop diam-

eters of approximately 1mm - 3mm. This allows simulation

of conditions from a light drizzle to a heavy downpour.

The effect of fog was simulated using an American DJ

Fogstorm 700 fog machine. The simulated fog was not

pure water vapor, but rather a mix of water vapor, glycol,

and other inert ingredients. However, as suggested in [9]

the particle size plays a major role in dispersing light.

It is therefore assumed that the principle effect was still

effectively modeled by this substance. This infrastructure

provides a solid basis for determining the sensor model in

the presence of obscurants.

III. CHARACTERIZATION

To account for obscurants in a SLAM implementation, the

model of the sensor with obscurants must first be obtained.

A. The Hokuyo

The sensor used for testing was the Hokuyo URG-04LX

show in Fig. 3. The biggest draw of this particular sensor

is its small form factor. At 50mm x 50mm x 70mm and

weighing only 160g, it is one of the smallest scanning laser

range finders available. This makes the sensor attractive for

small UAVs that fly in near-Earth environments.

According to the manufacturer, the Hokuyo has a range

of 20 mm - 4000 mm with an accuracy of ±1% and a 240◦

field of view with .36◦ resolution. This detection range is

catered towards slow flying aircraft [1]. For example, a craft

flying at 4 m/s at best would have 1 sec to react to a detected

Fig. 4. Histogram showing the range of measurements recorded for a white
piece of paper fixed 2m from the sensor. The plot shows the majority of
the points occurring at the correct measurement and varying no more than
±1%.

Fig. 5. Histogram showing the effect of rain on sensor measurements. The
red line shows measurements without rain, the blue line shows data taken
with rain at a rate of .2 in/min.

obstacle. For faster, higher altitude missions, a sensor with a

longer range would be required. Since the principle behind

all LIDAR sensors is the reflection of light off objects, the

results presented herein can be extended to similar sensors.

To confirm the manufacturer’s specifications, the sensor

was tested under standard environmental conditions. A sheet

of white paper was placed 2m from the sensor aligned at 0◦

(in the middle of the sensing range). 1000 data points were

recorded and the resulting histogram plotted in Fig. 4. As can

be seen in the figure, the data points were centered around

2000 mm with a standard distribution. This baseline data

confirms the specifications, with the majority of the points

falling within ±1% of the nominal value.

From this data a probabilistic model of the sensor can be

formed. Following standard SLAM procedure, the sensor is

modeled as a covariance matrix. In this case it is assumed that

the covariance matrix is constant for all scan beams (i.e. for

the entire visible range of the sensor). The covariance matrix

is then one dimensional, and in the case of no obscurants was

found to be Bo = 5.
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Fig. 6. Image depicting fog density. The fog shown in this condition
reduced visibility to approximately 8m.

Fig. 7. Histogram showing the effect of fog on sensor measurements. The
red line shows measurements without fog, the blue lines show data taken
with varying densities of fog.

B. Rain Testing

The rain machine was utilized to test the sensor’s per-

formance in rain. Preliminary testing indicated that the

most pronounced effect occurred in downpour conditions.

Therefore, results were only gathered for the highest flow

rate of .2 in/min.

Fig. 5 shows a histogram of the rain data compared to

no obscurants measurements. Rain slightly increased the

measurement error, thereby slightly increasing the standard

deviation. For rain, the covariance matrix on average was

found to be Brain = 8.39. This shows significant increase

over the case with no obscurants.

C. Fog Testing

Fog showed a much more dramatic effect on sensor mea-

surements as seen in Fig. 7. The accuracy of measurements

clearly decreases with density of fog. In the heaviest fog, the

mean of the distribution has been shifted and the deviation is

clearly very large. Since different fog densities had different

effects on measurements, there are several models that could

be used to approximate laser measurements in fog. For this

paper, the fog modeled reduced visibility to approximately

8m, shown in Fig. 6. The covariance matrix in the case of

fog in this case was Bfog = 13.75.

These models of the sensor’s performance characterize

how the sensor reacts under different environmental condi-

tions. This enables the use of SLAM techniques for extract-

ing maps from obscured sensor data.

IV. SLAM ALGORITHM

The algorithm utilized is a simplified implementation of

that presented in [7]. The implementation in [7] corrects

for pose error in all 6 dimensions and matches scan points

between scans. The implementation utilized in this paper

only considers the 3 translational dimensions and assumes

scan points match with their predecessor from the previous

scan. The fundamental concepts and their application are

presented here in brief.

This algorithm produces a 3D map of the environment

given noisy pose and terrain measurements. To find the cor-

rected pose, a probabilistic model is constructed. This model

is comprised of: the probability of the pose measurement,

the probability of differential pose measurements, and the

probability of consecutive scan alignment.

The probability of pose measurement is modeled as the

probability of measuring the pose given the corrected pose.

The system is taken to be 3 degrees of freedom, namely the

3 Cartesian coordinates. Their measurement at the current

time step is the vector yt, while the algorithm solves for the

corrected pose xt. Given the measurement covariance A, the

probability of yt given xt as presented in [7] is then:

p(yt|xt) ∝ exp−
1

2
(yt − xt)

T A−1(yt − xt) (1)

The method also utilizes a differential model. Typically,

the sensors onboard an aircraft measure rotational and trans-

lational rates. The pose is recovered through integration,

making it susceptible to drift. The differential model is less

affected by this error. Given D, the covariance of differential

measurements, the differential model as derived in [7] is:

p(∆yt|∆xt) ∝ exp−
1

2
(∆yt−∆xt)

T D−1(∆yt−∆xt) (2)

where ∆yt = yt − yt−1 and ∆xt = xt − xt−1. As

differential measurements are more accurate than absolute

measurements, the covariance matrix D should represent a

Gaussian with smaller standard deviation than A.

The final portion of the model is a representation of the

likelihood of a scan. Rather than representing individual

features as states as in traditional SLAM, the implementation

in [7] models the consistency between consecutive scans as:

p(zt|xt, xt−1, zt−1)

∝
∏

i exp− 1

2
min[α, minj (zi

t − f(zj
t−1

, xt−1, xt))
T

B−1(zi
t − f(zj

t−1
, xt−1, xt))]

The goal of this model is to match points from the current

scan with points from the previous scan. A point in the
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Fig. 8. Results from applying the SLAM algorithm to a data set gathered inside a mock urban environment (left). Gaussian noise was added to the pose
measurement to simulate data gathered from a helicopter (center). This data was then used to reconstruct the map (right).

current scan zi
t is compared to all points from the previous

scan zt−1. The function f maps a point from the previous

scan z
j
t−1

into the local coordinate system of the current

scan zt. The inner minimization identifies a point from the

previous scan that is closest to the point from the current

scan. The outer minimization thresholds this alignment to

allow for local inconsistencies such as those from sparse

objects. The matrix B is the measurement covariance.

Equations 1, 2 and 3 can be combined to form the

probabilistic model for the entire problem [7]:

p(yt|xt)p(∆yt|∆xt)p(zt|xt, xt−1, zt−1) (3)

The map and pose are recovered by finding the pose that

maximizes this likelihood, or by minimizing the negative log

likelihood given by [7]:

const +
1

2
((yt − xt)

T A−1(yt − xt)

+(∆yt − ∆xt)
T D−1(∆yt − ∆xt)

+
∑

i

min[α, min
j

(zi
t − f(zj

t−1
, xt−1, xt))

T

B−1(zi
t − f(zj

t−1
, xt−1, xt))])

This minimization is found by first minimizing to align the

current scan with the previous scan, and then performing hill-

climbing to determine the pose that minimizes the negative

log likelihood. These steps can be iterated until the negative

log likelihood falls within a threshold.

This algorithm was applied to a data set gathered with no

obscurants. The Hokuyo was attached to the end effector of

a gantry. The gantry was capable of translating the Hokuyo

through a mock urban environment, simulating the flight of

a UAV through cluttered terrain. In this case, the Hokuyo

was moved vertically upwards from the floor towards the

ceiling as depicted in Fig. 8. The gantry provided X, Y

and Z measurements of the pose while the Hokuyo provided

scan data of the environment. To simulate noise on the pose

sensors, Gaussian noise was added to the pose measurement.

The results are shown in Fig. 8. The image on the left

shows the environment that was scanned. The Hokuyo is

mounted to the end of the gantry, oriented such that it

captures the building in front of it, the rain machine, and

the palm tree. The plot in the center shows the resulting map

with Gaussian noise added, typical of raw data gathered from

a UAV platform. The plot on the right shows the same data

after being processed by the SLAM algorithm. The results

show the ability of the algorithm to recover the map from

noisy pose measurements. What remains to be seen is the

robustness of the algorithm to noisy laser scans.

V. RESULTS

The sensor models acquired earlier were utilized in equa-

tion 3 to form a model of the UAV in the presence of

obscurants. The SLAM algorithm was then applied to terrain

scans acquired under rainy and foggy conditions.

Fig. 9 shows the results of applying the algorithm to terrain

scans acquired in the presence of rain with a flow rate of 2

in/min. As can be seen in the figure, the rain had little effect

on the resulting map. The algorithm successfully recovered

the terrain with little to no noise present in the 3D plot.

Fig. 10 shows the results of applying the algorithm to

terrain scans acquired in the presence of fog with a visibility

of approximately 8m. Again, the algorithm successfully

recovered the map. However, the effect of sensor noise is

much more evident. The resulting map is uneven in several

places. It should also be noticed that some features were lost.

In particular, the tree is not as defined as in fig. 8.

Finally, fig. 11 shows the results of applying the algorithm

to terrain scans acquired in the presence of fog with a visi-

bility of approximately 2m. Under such extreme conditions,

there were several scans that were unable to penetrate the

fog. This drastically effected the resulting 3D plot. Major

features such as the building were lost at points, replaced by

a cloud of noise that surrounds the sensor.

VI. CONCLUSIONS

The results show that in general the algorithm is robust to

obscurants. The rain conditions showed little effect on sensor

measurements. While these results are accurate, it is believed

that the effect would be more pronounced had the rain been

distributed over a larger volume. Further testing is necessary

to fully characterize this condition.

The Hokuyo is surprisingly robust to fog. Only under the

most extreme conditions did the Hokuyo - and subsequently
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Fig. 9. 3D point cloud of the mock urban environment showing the results
of applying the SLAM algorithm under rainy conditions with a flow rate of
2 in/min. The rain had little effect on the map.

Fig. 10. 3D point cloud of the mock urban environment showing the results
of applying the SLAM algorithm under foggy conditions with visibility
of approximately 8m. The SLAM algorithm performed well, though some
features were lost (such as the tree).

Fig. 11. 3D point cloud of the mock urban environment showing the results
of applying the SLAM algorithm under foggy conditions with visibility of
approximately 3m. Under such extreme conditions, there were scans which
contained no terrain information. This drastically effected the resulting map.

the SLAM algorithm - fail. However, the results do clearly

show that the noise from fog results in uneven maps. Also,

objects that are more difficult to detect (such as the leaves on

the tree) are lost in foggy conditions. This result could prove

useful in path planning and collision avoidance algorithms

for UAVs. If the UAV is able to ascertain that foggy

conditions are present, it could be instructed to proceed with

caution, especially in areas with trees or bushes.

VII. FUTURE WORK

The results presented in this paper demonstrate the ability

to detect and map terrain features in the presence of ob-

scurants. However, it was shown that fog introduces noise

to the map and causes some features to be lost. The current

algorithm adjusts the pose measurement, but does not correct

scan data. The algorithm could be modified to filter sensor

data to produce more consistent maps in obscured conditions.

This would come at the expense of processing time.

Also, the algorithm fails when the laser range finder is

blinded. This could prove detrimental to the craft. To mitigate

this condition, work needs to be done to investigate deriving

terrain from previous “good” scans or fusing data from other

sensors onboard that are not as affected by obscurants.
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