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Abstract— This paper presents work on integrating percep-
tion and motion-planning for a humanoid robot to ingress, or
enter, a small utility vehicle as a precursor to driving, a stage
in the recent DARPA Robotics Challenge (DRC). Using a Hubo
2+ robot platform and a pair of RGB-D cameras, we describe
a set of approaches to and present results on the first four
phases of ingress: (1) visually search for the vehicle’s doorway
as a target to walk toward, (2) plan and execute a collision-free
approach to the doorway via walking using visual odometry,
(3) make visually-guided fine positioning adjustments near the
entry door during docking, and (4) step from the ground up to
the floor of the vehicle. All recognition is done on 3-D point
clouds derived from the depth cameras without appearance
information. Some further ingress results from the DRC-Hubo
making use of grasping are also shown.

I. INTRODUCTION

As part of the recent DARPA Robotics Challenge (DRC)
trials [1], contestant robots were challenged to carry out a
series of navigation and manipulation tasks which would take
them from the edge of an accident zone at a location such
as a nuclear power plant to an area where they can survey
and possibly repair damage. The original definition of the
first stage in the challenge tasked the robot to approach a
car-like vehicle, enter it, drive it to a target location, get out,
and walk to a building. We name these stages ingress, driving
proper, and egress, respectively.

There are a large number of perceptual, motion planning,
and control problems to solve in order to successfully com-
plete the driving challenge. In this paper we focus only on the
ingress stage. which we break into several phases. Consider
Fig. 1. From its initial position, the robot must first search
for the vehicle it will drive in a possibly cluttered scene. Not
just any part of the vehicle will do–the robot must also locate
and choose one of its doors as the planned entry point. Next
the robot must plan a walking path to its goal around possible
obstacles and accurately follow that trajectory to approach
the vehicle. When the robot gets close enough to the vehicle
it must start to visually home on its target door in order to
properly align itself or dock for the final phase of ingress,
actually stepping up into the vehicle without colliding with
it and while maintaining balance.

Subsequent stages of the ingress task which will not be
examined here include executing the sitting maneuver, an
analogous step to docking while seated to get precisely
aligned with the steering wheel which we call scooting, and
finally interfacing. During interfacing all control surfaces of
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Fig. 1. Hubo 2+ robot in testing area at beginning of search phase of
ingress.

interest such as the vehicle on/off switch, steering wheel,
accelerator/brake pedals, and the gear shifter (for reversing)
must all be located and parametrized. Furthermore, the robot
must carry out a set of calibrations before the vehicle begins
moving such as checking the reachability of these control
surfaces, grasping/touching them, inferring or refining ex-
pected affordances, measuring force resistance, etc.

A. Related Work

There has been much recent work on 3-D object detection
using depth cameras and similar sensors [2], [3], [4], [5].
Additionally, [6] uses visual appearance, local shape and ge-
ometry, and geometric context features to label colored point
clouds of indoor office and home scenes with a large number
of classes such as wall, keyboard, chairback, monitor, book,
and so on. [7] looks for objects such as cups, bowls, cereal
boxes, etc. in point clouds with color information using an
RGB-D variant of HOG detectors after first training on 3-D
models. Similarly, much work has been done with the PR2
robot in terms of looking at tabletops and segmenting and
identifying objects with its ladar and/or stereo cameras [8],
including plane fitting and region growing for segmentation
in a kitchen environment [9]. Also relevant is the work in
[10] on door handle detection using a tilting Hokuyo after
first finding doors using depth and reflectance information.
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Fig. 2. (Left) Hubo 2+ robot in testing area with prototype sensor head;
(right) Sensor head with two Asus Xtion Pro Live depth cameras. Stereo
color cameras, a tilt Hokuyo, and an IMU are also part of the head but not
used here.

There has been a substantial amount of work on image-
based car recognition/detection in street scenes including
[11], [12] and [13], which takes a bag-of-words approach,
but none specifically that we could find which focuses on
3-D data.

Closely related work includes bipedal walking and naviga-
tion [14], [15], and efforts to get bipedal robots to step up or
climb stairs. The Nao robot climbs a spiral staircase in [16]
after stopping to acquire a point cloud with a short-range
tilting Hokuyo and segmenting individual tread rectangles.
The authors mention [17], [18] as key prior work on using
RANSAC-like techniques to perceive a single step. The
Honda Asimo robot sees isolated planar steps with a tilt
ladar, stepping around or onto them in [19], [20]. There is
also analysis of point clouds for stair perception in [21].
However, biped walking and stair climbing motions alone
are not sufficient for the step phase of the ingress task, as
cyclic gaits are not well suited to issues such as planning
of end effector trajectories in cluttered environments while
simultaneously considering balance.

[22] showed that the HRP-2 robot can step into a utility
vehicle in a simulation environment. However, their approach
made assumptions about gripping power which may not be
achievable with current robots. [23] also demonstrated vehi-
cle ingress motions using a humanoid model in a simulation
toolkit. Their trajectory had a height requirement that the
robot hip start above the seat, which is not always possible
for such vehicles.

II. EQUIPMENT

For most of this work, our robot is a humanoid called
Hubo 2+ [24] which is 130 cm tall and has a mass of 42
Kg. It has 38 total degrees of freedom (DoF): 6 DoF in each
limb, 3 DoF in the neck, 1 DoF at the waist, and 5 DoF per
hand. Normal walking speed is 0.5 m/s, with a maximum of
1.0 m/s. We also present some results with the DRC-Hubo, a
larger and stronger successor to Hubo 2+, shown in Fig. 11.

A prototype sensor head, pictured on the right in Fig. 2,
was used for the Hubo 2+ results here. The relevant sensors

are two Asus Xtion Pro Live RGB-D cameras mounted with
approximately a 45◦ pitch difference between them. Depth
and color images were captured from each Asus at 320×240
resolution at 30 fps. We do not currently have an actuated
neck strong enough for the sensor head, so it is mounted at
a fixed pitch angle of 30◦ below horizontal. The combined
vertical field of view of the cameras is about 80◦ which
allows a view of the ground from the robot’s feet out to
the vehicle while walking, as can be seen in Fig. 3. The
horizontal field of view is 60◦. When a wider view is required
the robot pans its waist joint as pictured in Fig. 8. In contrast,
the DRC-Hubo’s sensor head can pan and tilt and has a
Hokuyo ladar range-finder on a dedicated tilt servo for point
cloud acquisition.

Outdoor operation would preclude the use of the RGB-
D cameras shown here, so the sensor head prototype has
other sensors which can provide depth information in sun-
light. Although the use of intensity or color information in
conjunction with the depth information from the cameras
could certainly help our algorithms, we have chosen to focus
exclusively on XYZ point clouds alone in order to make
fusion of and switching between different sensors easier.

III. SEARCH PHASE

Throughout this paper we use the ROS [25] convention
for coordinates of +X forward, +Y left, and +Z up.

A prerequisite for virtually all steps in this paper is the
maintenance of a good ground plane estimate at all times,
given that the cameras are pitched downward sharply and
the robot sways back and forth as it walks. Having such
an estimate allows us to rectify the entire point cloud, put
the ground plane at Z = 0, and remove ground plane
points by thresholding |z| ≤ 0.05 m. We initially detect and
parametrize the ground with a robust plane fit on nearby
depth camera points using RANSAC [26], and smooth sub-
sequent estimates with a Kalman filter and gating to prevent
height jumps near parallel planes such as the vehicle floor
(see Sec. V). A sample ground-obstacle segmentation for the
scene in Fig. 3 is shown at the left in Fig. 7.

With the ground plane and a coarse shape model, the first
part of the search phase—aka vehicle detection in the scene
point cloud—can be framed as a 2-D template matching
problem as we discussed in [27]. The last part of the search
phase is to localize the entry pose Pentry, or where the robot
wants to be before stepping into the vehicle. The entry pose
serves as a goal pose for the walking motion planner in the
approach phase detailed in Sec. IV.

The entry pose is derived relative to a detected vehicle
part, namely one of its doors. For the test vehicle used for
this paper’s results and many vehicles in this category, there
is no door per se but simply a gap between the seat and
the dashboard which we will call the doorway. This area is
visible in Fig. 4. In order to avoid collision complications
due to the steering wheel during the step phase, we prefer
the passenger-side doorway. With the current sensor view
registered to the vehicle and non-vehicle points trimmed



Fig. 3. Views from Hubo 2+ sensor head’s pair of RGB and depth cameras.
See Fig. 7 for associated ground/obstacle segmentations and sample motion
planning results.

Passenger Rear (PR) Passenger Mid (PM)

Fig. 4. Images from sample capture locations near the vehicle (these are
from the stereo camera in Fig. 2 and not used for perception here)

away, the search for the doorway before walking commences
is considerably constrained.

We find the doorway by looking for the floor beyond it, a
planar rectangular region parallel to the ground plane whose
nearest edge defines the doorway. To avoid confusion with
the seat or hood planes we use our prior knowledge that
the floor plane must be at a steppable height. Assuming that
this is a roughly constant offset above the vehicle’s ground
clearance, we use specifications from the set of exemplar
vehicles introduced in [27] to obtain minimum and maximum
bounds on the floor height (in this case zfloor ∈ [0.15, 0.40]
m). Excluding points in the registered sensor point cloud
outside of this range yields a nominal floor slice upon which
we then run a RANSAC horizontal plane fit (i.e., the normal
must be within 5◦ of vertical). This finds the floor plane in
the H∗

s as well as Hveh.
Fig. 5 shows the floor plane inliers for each view in green

and outlier points from the vehicle in red. Isolating the cluster
of inliers belonging to the floor region itself can be formu-
lated as a constrained rectangle-finding problem. Assuming
that the floor rectangle’s axes are aligned with those of the
vehicle, its width is approximately the same as the vehicle,
and its center is on the vehicle centerline. This leaves only
2 free variables to determine Rfloor: (xfloor, lfloor), the
floor’s forward/backward position and dimension (i.e., the
distance between the seat and the dashboard). We put reason-

FPRasus FPMasus Fveh

Fig. 5. (Top left) Registered and trimmed heightmaps of top Asus for
scenes in Fig. 4; (top right) Vehicle heightmap Hveh derived from a KinFu
(based on [28]) point cloud; (bottom) Inliers after horizontal plane fitting
on floor height slice in green, outliers (all other vehicle points) in red, and
fitted rectangles outlined in blue. “No data” points are white here.

able bounds on these variables and again run a particle filter
with the likelihood function Pfloor(R) = (Nin − Nout)/A,
where Nin is the number of floor plane inliers in R, Nout is
the number of outliers in the rectangle, and A is its area.

The search is very fast to converge and only 10 iterations
are needed. The blue lines in Fig. 5 indicate the estimated
floor rectangles. These are accurate when the whole floor
region is visible, and conservative when it is not. Impinge-
ments like the pedals, drink holders, and steering wheel are
detectable as outlier points present inside the floor rectangle,
and this information can be passed on to the motion planner.

IV. APPROACH PHASE

The approach phase begins when Pentry has been se-
lected. Motion goals during this phase are specified in an
odometric frame with its origin at the robot’s initial position
P0. In order to walk directly to the goal, some form of
localization is required. We do not use an overhead camera
to localize the robot or a prior map of the environment,
but rather update odometry as the robot walks. The robot
currently walks in an open-loop fashion, and while there is
feedback on joint angles it is noisy and not at a high rate.
While visual homing on the vehicle just found during the
search phase is a viable option, we do not use it during this
phase because of the practical limitation of the lack of a
pannable neck. If the robot needs to go around an obstacle it
will likely lose sight of vehicle due to the cameras’ narrow
field of view.

Our solution is visual odometry. Over the last decade
visual odometry has become a common component of many
indoor and outdoor robot navigation systems [29], [30], and
it is particularly valuable on legged robots for which joint
angle integration is error-prone [31], [32]. Visual odometry
without scale ambiguity is typically accomplished using a
stereo camera with feature triangulation, but because the



Fig. 6. Visual odometry for Hubo 2+ approach trajectory following. (Left)
Feature tracks during waist panning and walking, clearly showing sway;
(Right top) Robot was commanded to go to the spot indicated with the blue
circle, then the spot with the red circle, and to turn to face parallel to the
side of the vehicle. (Right bottom) The robot’s final location.

depth cameras provide pixel-registered depth with RGB, this
step is considerably simplified. We experimented with several
existing libraries including [33], [34], but either because
of efficiency or difficulty with proper parameter selection,
wound up implementing our own approach.

Our features are OpenCV Good Features to Track, and
frame-to-frame match hypotheses are derived directly from
Lucas-Kanade optical flow in pyramids. Outliers are filtered
with robust fundamental matrix fitting, and tracks are ex-
tended for as many frames as possible. New features are
added in every new frame where old tracks have ended.
Motion is estimated between the set of tracked features at
time t relative to their location in a keyframe up to several
seconds before, where new keyframes are started when the
number of viable tracks has dropped below threshold. The
keyframe-relative motion estimates are computed from the
3-D locations of the features as inferred from the registered
depth images, and it is these estimates which are integrated
as the robot moves.

The Hubo robot walking motion is not currently controlled
at the fine-grained level of footstep planning as in [19],
but rather through modal directives such as “walk forward”,
“stop”, “turn in place left”, and so on. Under this regime
the robot cannot turn while walking, and step lengths are
a constant 5 cm each. To accommodate these limitations,
we use a search-based planner built on straight and turn-in-
place motion primitives [35], [36] which runs on a costmap
generated from the obstacles found after ground plane ex-
traction. This limits the curviness of generated paths greatly,
and with some further filtering we obtain paths that avoid
obstacles with relatively long straight segments. An example
is shown in Fig. 7.

V. DOCKING PHASE

At the end of the approach phase the robot is assumed
to have stopped near the Pentry from Sec. III, with some

(a) (b)

Fig. 7. Screenshots of ROS rviz corresponding to scene shown in
Fig. 3. (a) Ground/obstacle segmentation; (b) Obstacle costmap (white),
inflated obstacles (gray), SBPL path (green) to entry point pose simplified
to subgoals (yellow discs).

(a) (b) (c)

Fig. 8. (a) Hubo 2+ during docking phase of ingress on golf cart; (b)
Combined depth image from robot’s point of view; (c) Corresponding rviz
screenshot showing segmented vehicle floor (blue) and edge (yellow) that
guide docking motions.

error based on its initial pose and odometry. Whereas during
approach we used an odometric coordinate system with
its origin at the robot’s initial pose, now it is convenient
to switch to a vehicle-based coordinate system (recall that
+X is forward and +Y is lateral toward the driver’s side).
Specifically, we set the origin to the forward end of the entry
door. If the doorway can be visualized and tracked, we can
directly measure the error between the actual robot pose and
the entry pose as its position (x, y, θ) in door coordinates,
where θ is the angle between the robot heading and the door
line segment. The acceptable errors (∆x,∆y,∆θ) around
the optimal entry pose determine an entry pose target zone.
Experimentally and though simulation we have found that
zone to be about 0.1 m × 0.1 m ×5◦.

If the robot is in the entry pose target zone at the end of
the approach phase, we can skip directly to the step phase.
Otherwise, the robot must reposition itself. We do this by
directly tracking the doorway and performing position-based
visual servoing on it to drive the error down. During this
phase the robot is allowed to step forward and turn in place
as during approach, but the step lengths are shortened (e.g.
to 2.5 cm). The robot is further allowed to step backward
and sidestep, also in the same shortened lengths. With the
current walking controller these moves cannot be combined,
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Fig. 9. Reinforcement learning agent-based algorithm for step trajectory
generation

so the robot serially reduces first ∆θ, then ∆x, then ∆y.
For maneuvering so close to the vehicle, the robot “tucks”

its arm close to its torso. Another issue is that head sway
gives variable distance readings as the robot sidesteps. The
head enters the target zone before the torso, so to prevent pre-
mature ending of the phase we require that visual odometry
report no movement before allowing a final measurement.
Also, there is some difficulty with the ground plane track-
ing locking onto the vehicle floor plane when there is no
mechanism to reject height jumps during docking.

VI. STEP PHASE

To generate a step motion for the Hubo robot, we first
produced an initial contact trajectory of end effectors which
is a trace of foot movement starting from a designated ground
position and arriving at a goal position in the vehicle. This
trajectory was first based on motion capture of human hip and
feet while executing the motion (the motion capture system
is visible in Fig. 1).

The hip trajectory of captured human motion was assigned
to a reinforcement learning algorithm-based optimization
agent as an input center of mass (CoM) trajectory. Fig. 9
illustrates the trajectory optimization architecture. At each
time step, the hip position of the input trajectory was allowed
to change its values with in bounded ranges and this variance
generated multiple states of each time step in learning
algorithm. Thus, the goal of the learning agent is to choose
an optimal sequence of states from these choices with respect
to defined constraints. Further details are in [37].

Inputs of the optimization agent include only a CoM
trajectory of hip and a contact trajectory of foot from the
captured human motion. Since the hip trajectory allows
variance of its values in learning agent and generated states
of Q table in each time step, only foot trajectory has constant
values at each time step. However, as we described above,
position and rotation values of the foot trajectory could be
modified and re-designed before optimization process starts.
This allowance of the agent could adapt contacts of end
effector according to dimension of the utility vehicle and

Fig. 10. Hubo 2+ demonstrating the validated trajectory for the initial step
phase on the golf cart.

could generate various output trajectories for a step motion.
For example, by decreasing the maximum height of left and
right foot in an input foot trajectory, the optimization agent
could generate a step motion for Hubo with a smaller step
height and still guarantee static balancing.

After testing the optimized trajectory in a simulation
model for collision and quasi-static balancing, the validated
trajectory was applied to the real Hubo 2+ robot on our
test vehicle (a golf cart) using offline vehicle measurements
as shown in Fig. 10. These are exactly the measurements
provided by the perception module during the docking phase.

Hubo 2+’s hand strength is insufficient to consider grip-
ping vehicle parts such as the dash or roof pillars to aid the
step motion, but with the DRC-Hubo we have been able to
make use of the latter. The full step phase for the DRC-Hubo
in the golf cart is shown in Fig. 11. We have also been able
to replicate this motion on a larger vehicle (a Polaris Ranger
XP900) with the sensor head attached.

VII. CONCLUSION

We have a presented a set of modules related to the vehicle
ingress task which run on the Hubo 2+ humanoid robot
platform. Each of the modules works well and there is a
loose integration between them, but there is much more work
to be done to make the system work end-to-end seamlessly.
In future work we plan to move to outdoor environments for
testing and will thus be incorporating data from the color
stereo cameras and tilt ladar on the DRC-Hubo sensor head.
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