
Robust Ladder-Climbing with a Humanoid Robot with Application to
the DARPA Robotics Challenge

Jingru Luo1 Yajia Zhang1 Kris Hauser1 H. Andy Park2 Manas Paldhe2 C. S. George Lee2

Michael Grey3 Mike Stilman3 Jun Ho Oh4 Jungho Lee5 Inhyeok Kim5 Paul Oh6

Abstract— This paper presents an autonomous planning and
control framework for humanoid robots to climb general
ladder- and stair-like structures. The approach consists of two
major components: 1) a multi-limbed locomotion planner that
takes as input a ladder model and automatically generates a
whole-body climbing trajectory that satisfies contact, collision,
and torque limit constraints; 2) a compliance controller which
allows the robot to tolerate errors from sensing, calibration, and
execution. Simulations demonstrate that the robot is capable
of climbing a wide range of ladders and tolerating distur-
bances and errors. Physical experiments demonstrate the DRC-
Hubo humanoid robot successfully mounting, climbing, and
dismounting an industrial ladder similar to the one intended
to be used in the DARPA Robotics Challenge Trials.

I. INTRODUCTION

Robots will need robust ladder- and stair- climbing skills to
navigate and perform maintenance tasks in man-made struc-
tures like homes, offices, and industrial environments. These
behaviors are challenging to be implemented on humanoid
robots because they require full-body coordination, fine
motor skills for docking hands and feet, and substantial upper
body strength. Other climbing robots have used specialized
equipment or custom-designed environments (e.g., [1]–[4]).
Motivated by the DARPA Robotics Challenge (DRC), we
address multi-purpose humanoid robots that can also perform
tasks that might be expected of a human aid worker in dis-
aster scenarios, e.g., rough-terrain locomotion, manipulation,
and driving. We apply this work to the DRC-Hubo humanoid
(see Fig. 1) but our approach is adaptable to many humanoid
robots and climbable structures.

Ladder-climbing is usually straightforward for humans,
and can be broken into a sequence of sub-tasks, e.g., move
the foot to a higher rung, transfer the center of mass to the
supporting foot, raise the hand to a higher rung, etc. While

*This work was supported by the Defense Advanced Research Projects
Agency (DARPA) award # N65236-12-1-1005 for the DARPA Robotics
Challenge and NSF grant IIS #1218534. Any opinion, findings, and conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of DARPA.

1School of Informatics and Computing, Indiana University Bloomington,
USA {luojing,zhangyaj,hauserk}@indiana.edu

2School of Electrical and Computer Engineering, Purdue University, USA
{andypark,mpaldhe,csglee}@purdue.edu

3School of Interactive Computing, Georgia Institute of Technology, USA
{mxgrey,mstilman}@cc.gatech.edu

4Korea Advanced Institute of Science and Technology, South Korea
jhoh@kaist.ac.kr

5Rainbow Co., South Korea jungho77@rainbow.re.kr,
inhyeok@kaist.ac.kr

6Mechanical Engineering and Mechanics, Drexel University, USA
paul@coe.drexel.edu

Fig. 1. Left: DRC-Hubo robot and its degrees of freedom. Right:
DRC-Hubo climbing an industrial ship ladder using our approach.

the choice of contacts and motions in each sub-task may
be intuitive for a human, a robot often has to generate its
motion de novo due to subtle differences in kinematics and
dynamic capabilities. As a result, designing effective robot
climbing strategies is surprisingly challenging. For example,
although humans usually face forward while climbing, our
design experiments determined that backward climbing gives
larger clearance between DRC-Hubo’s legs and the ladder
rungs, because its ankles are rather large and it cannot
bend forward at the waist (see Fig. 2). This does not pose
a sensing problem for DRC-Hubo because it can swivel
its neck 180◦. Another example is the use of a toe joint:
human climbers dynamically toe-off when lifting a foot
onto a higher rung, which reduces stress on the quadriceps
which would otherwise need to lift the entire body weight,
essentially performing a difficult one-legged squat. DRC-
Hubo, on the other hand, has no toe joint, but has sufficient
torque to lift itself easily on one leg.

This paper presents a planning and control framework
for autonomous ladder climbing (Fig. 3) once the robot has
acquired a model of its local environment. It has three im-
portant characteristics: 1) the use of motion primitive-based
motion planning to give “hints” to the robot while remaining
adaptable to different ladders [5], 2) generation of strictly
feasible motions that obey physical constraints and robot
performance limitations [6], [7], and 3) selective compliance
to let the robot act stiffly in task-relevant dimensions and
softly in the most uncertain dimensions [3].

The method plans climbing motions in seconds, and
simulation experiments were employed to verify that the

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3685-4/14/$31.00 ©2014 IEEE 2792

Fig. 2. Comparison of different climbing strategies. Left: in forward
climbing, the leg joints can easily collide with the rungs (the colliding
joints is drawn in yellow); Middle: in forward splayed-feet climbing, the
leg clearance is improved but this strategy is not able to climb ladders near
vertical; Right: backward climbing provides the best leg joints clearance.

Ladder-Climbing
Motion Planner Ladder Model/Specs

Robot Positioning w.r.t Ladder

Whole-body Trajectory
• Collision-free
• Quasi-statically Stable

Input:

Compliance
Controller

Perception
Module

DRC-Hubo
Hardware

Output:

Joint Commands and
Torque Commands

Fig. 3. Ladder-climbing framework. We assume a perception
module (which is underdevelopment and not covered in this paper)
provides the ladder environment as input to the ladder-climbing
motion planner. The planner generates a feasible trajectory for a
compliant controller which enables compliance on arm joints for
error compensation.

robot can execute them successfully on a wide variety of
ladders, including A-frame ladders, vertical ladders, and ship
ladders. The system is also relatively robust. Experiments
on the physical robot suggest that errors in rail position be
tolerated as long as the rail is within the open fingers’ range,
approximately ±5 cm left and right. Simulation experiments
also suggest that errors of ±2 cm in rung spacing may be
tolerated in successful. Finally, we employed the system to
enable the physical DRC-Hubo to climb up stairs while
holding handrails, and to mount, climb, dismount a ship
ladder similar to the ladder intended to be used in the DARPA
Robotics Challenge Trials in December 2013 [8].

II. INTEGRATED HARDWARE AND SOFTWARE
FRAMEWORK

This section summarizes our integrated planning, control,
and execution framework. The major components will be
described in more detail in later sections.

A. DRC-Hubo Robot

The DRC-Hubo humanoid is an upgraded version of
Hubo-II+ built by Rainbow Co. for Team Hubo participating
in the DARPA Robotics Challenge. This robot is about
140cm height and 50kg weight and has 33 degrees of
freedom (DOFs): 7 in each arm, 6 in each leg, 1 in the waist,
3 in the neck, 1 in each hand for controlling the opening

and closing and one extra for the trigger finger on the right
hand(see Fig. 1).

The sensor head installed on DRC-Hubo contains a lidar
and stereo cameras for perceiving the environment and
providing visual feedback. The robot is also equipped with
3-axis F/T sensors on each wrist and ankle, accelerometers
and gyros on the ankles and an inertia measurement unit for
sensor feedback in motion execution. Two computer modules
are located in the chest; one for real-time whole-body control
through Controller Area Network (CAN), and the other for
vision processing. In the current work, we do not use vision
except to help a human operator pre-survey the ladder model.
Work to integrate perception with planning is ongoing.

B. Ladder and Environment Modeling

The input to our system is a ladder model and relative
pose of the ladder w.r.t. the robot. The output is raw motor
commands for the DRC-Hubo to execute. It supports a
wide variety of ladder models, including A-frame ladders,
regular ladders, and ship ladders. The ladder specification
contains an arbitrary number of stringers, rungs, and hand
rails. Parameters describe the ladder inclination, number
of rungs, rung spacing, rung width, rail height and cross-
sectional geometries which can be circular or rectangular
(Fig. 4). These models can be estimated in a number of ways,
such as on-board perception, chosen by a human operator,
or pre-surveyed from architectural blueprints. Obstacles like
support rails or safety cages may also be incorporated into
the environment, and the planner will avoid collision with
these obstacles.

The framework also supports partially-known environ-
ments. When the ladder is only partially in-view, the robot
will climb a user-specified number of steps, and replanning
will be invoked once it gets a better view. This capability
is particularly useful when the top of the ladder and/or
dismount area is occluded from the robot’s initial pose.

Fig. 4. Ladder models that can be addressed by our system. Left: a regular
ladder. Middle: an A-Frame ladder. Right: a ship ladder. Basic parameters
shared by all ladders are marked on the regular ladder and special parameters
for A-Frame ladders and ship ladders are marked separately.

C. Motion Primitive-Based Planner

The planner takes the robot’s posture and environment
knowledge as input, and outputs a collision-free and quasi-
statically stable joint-space trajectory. Motion primitives,

2793

trajectories designed by human experts, provide the robot
with prior knowledge about how to solve the ladder climb-
ing problems – where the limbs are placed, how to keep
balance, how to avoid collision with rungs, etc. Our planner
adapts primitives to new ladders using a combination of
optimization and sampling-based planning techniques [5]. To
ensure reliable planning, it is important that the planner can
backtrack rather than commit to all of its choices, because
an early bad choice of contact can lead to stalled progress
later on. Surprisingly, the planner can solve a wide variety
of ladders quickly with only one primitive sequence.

Fig. 5. Illustration of motion planning process. Left: A motion prim-
itive includes limb placement and waypoints information designed
for certain ladder. Middle: The motion planner first determines
the limb placement in the new ladder, then performs a linear
transformation that transforms the existing motion primitive in
configuration space to fit the new environment. Right: A sampling-
base process is used to retract the collision section (drawn in red)
to obtain a collision-free path.

D. Compliance Controller

The controller interpolates the planned trajectory and
sends commands to the hardware for execution. Early exper-
iments with DRC-Hubo showed that executing in open loop
is problematic. Due to stiff closed kinematic chains, small
errors in contact can cause excessive contradictory torques
on the joints, leading to motor damage and/or shutdown.
We employ a compliance controller to remedy this problem
through current-based torque control. Because DRC-Hubo
already has passive compliance in its ankles we found the
compliance is only needed on the arms; as the robot closes
its hand into a secure grip, it corrects errors on the hand
position relative to the railings.

III. LADDER CLIMBING MOTION PLANNING

The motion primitive planning approach is a hybrid of
gait-based and sampling-based planners that blends the speed
of gait-based techniques with the generality of sample-based
ones [5]. Early work on motion planning for humanoid robots
have studied gait-based methods for footstep planning [9],
integration of footstep planning and vision [10], and selec-
tion of locomotion styles/postures to pass through narrow
spaces [11]. These are most applicable to flat terrain with
obstacles, and have limited applicability to highly variable
terrain. More recent sampling-based techniques have allowed
the robot to generate motions on highly varied terrain by
reasoning directly with motion constraints [12]. Since ladders

and stairs are semi-structured, it is reasonable to believe that
a small number of predetermined gaits can be applied to new
ladders with a small amount of adaptation if the planner is
sufficiently powerful. Experiments in this paper confirm this
intuition.

A. Definitions of Motion Constraints

Balance, actuator constraints, and collision avoidance are
critical during climbing. The robot begins and ends on a two
foot stance, and during climbing, it makes contact with three
or four limbs. To model this, we introduce the concept of a
hold to represent the overall contact of a single limb with
the environment. The feasibility of plan depends on both the
robot’s configurations and contact state during the motion.

A hold includes multiple point-contacts r1, . . . , rk on the
robot limb meeting x1, . . . , xk on the environment, and their
contact normals n1, . . . , nk and friction coefficients are used
to model the range of forces applicable to the environment
(Fig. 6). In our implementation, we model a hand hold (with
fingers) with eight point-contacts when the hand makes a
tight grasp on the rail (see Fig. 6 (a)); and the foot hold
with vertically-oriented point-contacts (see Fig. 6 (b)) at the
corners of the contact region (four on a rectangular rung and
two on a cylindrical rung). A set of holds yields a stance σ
that describes a contact state of the robot (Fig. 6 (c)).

Fig. 6. (a) Hand hold modeling (b) Foot hold modeling. Each hold includes
a set of point-contacts, the contact normals and the friction cones. (c) A
configuration at the stance with two hands and two feet holds. Friction
coefficient is assumed to be 0.25 in our example.

A configuration q at σ is defined as feasible iff it satisfies
all the following constraints:

1) Contact constraints: robot maintains the point-contacts
specified by all the holds in σ. This constraint restricts
the motion to a lower-dimensional submanifold of
configuration space.

2) Joint limit constraints: q ∈ [qmin, qmax].
3) Collision free with the robot itself and the environment.
4) Quasi-static equilibrium: gravity balances the contact

forces respecting friction, torque and grip force limits.

2794

A linear program is formulated to check if there exists
contact forces (f1, . . . , fk) respecting force limits at
the given configuration q at stance σ for achieving bal-
ance (a method similar to [13]), where f1, . . . , fk are
the contact forces for all the point-contacts r1, . . . , rk
in σ respectively.

We define the feasible set of configurations at a stance as
Fσ = {q | q is feasible at σ}.

The planner outputs a continuous path of configurations
q(t) and stances σ(t) such that the configuration is always
feasible at its given stance. Stance switches are assumed to
occur at discrete points in time.

B. Motion Primitives

The planner accepts two types of motion primitives, with
each motion primitive corresponding to a specific sub-task:

1) Limb transfer. Such primitives invoke one hold change:
add or remove the contacts of one limb while keeping
other holds unchanged. E.g., placing the hands on the
ladder from the standing pose will create new contacts
on the hands while keeping the contacts on the feet
unchanged; moving the left foot onto a higher rung
will change its contacts to higher rung while keeping
the rest holds unchanged.

2) Center of mass (COM) transfer. These primitives trans-
fer the COM position without changing the stance.
E.g., before moving left foot onto a higher rung,
the COM is transferred to the right foot to achieve
balance. In our implementation, there are three motion
primitives for adjusting COM position, transfer COM
to left/right foot before moving one foot, and transfer
COM to the center of the two feet before releasing
hand contacts.

Our implementation composes a ladder-climbing motion
out of two motion primitive sequences, for a total of 9
primitives (see Fig. 7). The first sequence (primitives 1–2
in Fig. 7) mounts the ladder. The second executes a single
climbing cycle of 7 primitives that ascends one rung (3-9 in
Fig. 7). Furthermore, motion primitives for dismounting are
designed specially for different ladders according to the top
platform.

C. Motion Primitive Adaptation Planner

COM transfer tasks are relatively simple to plan, and
simply require checking for the existence of a linear COM
trajectory to the support foot. Limb transfer tasks are more
complex because they require finding new contact positions
as well as configuration-space paths. Here we describe the
primitive-guided sampling-based planner in detail.

First, the planner samples hand and foot placements for
limb transfer primitives, incorporating the human designer’s
knowledge from the motion primitives. Each such primitive
defines a seed hold representing the “ideal” set of point-
contacts relative to the ladder model and the robot’s current
configuration. Given the starting stance σs, the ending stance
σe of current sub-task is generated by sampling a hold hd
around the seed hold for the moving limb while keeping the

rest holds unchanged. The transition stance is σt = σe−hd,
which excludes the hold for the moving limb.

Second, the planner uses the discretized configurations of
the motion primitive Q̄ = (q̄s, q̄1, . . . , q̄k, q̄e) to generate a
feasible configuration sequence Q = (qs, q1, . . . , qm, qe) that
satisfy:

1) qs ∈ Fσs

2) q1, ..., qm ∈ Fσt

3) qe ∈ Fσe

To do so, it calculates an ending configuration qe by
projecting q̄e on to the contact constraints of Fσe using a
numerical inverse kinematics (IK) solver. We use a Newton-
Raphson technique with random restarts from increasingly
perturbed initial configuration q̄e. Perturbations help increase
the success rate by avoiding local minima for hard problems,
while staying close to the seed q̄e. With each success-
ful projection, collision is checked, and configurations that
collide with the environment are retracted by solving a
nonlinear constrained optimization process, similar to the
Iterative Constraint Enforcement algorithm [13]. Algorithm
1 describes the projection procedure. The iteration limit n is
set to be 10 in our implementation.

Algorithm 1 Project a configuration q̄ onto Fσ
for i = 0, 1, . . . , n: do

q ← Solve-IK(q̄ + perturb(i))
if IK was successful: then

if q is collision free and stable: then
return q

if q has no self-collisions: then
if retract(q) succeeds and q is stable: then

return q

Finally, the intermediate configurations (q̄1, . . . , q̄k) of Q̄
encode the waypoints for avoiding obstacles. Because they
are designed for a certain ladder, they need adjustment to
the new problem. We begin by performing a linear trans-
formation that transforms Q̄ to begin and end at the new
(qs, qe) using a method similar to [5] (see Fig. 5). Again,
perturbations are used to retract configurations that collide
with the environment. Once milestones (qs, q1, . . . , qk, qe)
are obtained, a recursive Bezier projection technique is used
to smoothly interpolate between milestones while maintain-
ing the contact constraints of Fσt

[14]. A final feasibility
check is then performed on the path.

The Motion Primitive Adaptation Planner is given by the
following pseudocode:
Adapt-Primitive(Q̄, qs, σs)
1. Sample ending stance σe from σs
2. Calculate qe ∈ Fσe

(Algorithm 1)
3. Linear transform Q̄ according to (qs, qe)
4. Utilize Q̄ for generating milestone path Q
5. Fine discretize Q and check feasibility

If any step fails, the algorithm returns failure; otherwise,
it returns a feasible path for the sub-task.

2795

Fig. 7. Motion primitive examples, with the final configuration of each
primitive shown. From left to right, top to bottom: mountLH, mountRH,
moveCOMtoRF, placeLF, moveCOMtoLF, placeRF, moveCOMtoCenter,
placeLH and placeRH where L and R indicate left and right, H and F
indicate hand and foot respectively.

D. Multi-Step Planning

To compose primitives together into an N -primitive climb-
ing sequence, the planner performs a depth first search. This
approach allows the possibility of backtracking to revise a
prior choice if the current move appears infeasible or hard.
The recursive multi-step planning procedure is given by the
following pseudocode:
MSP-Recurse(qi, σi)
1. Get the next primitive Q̄i+1

2. For j = 0, . . . ,m :
3. If Adapt-Primitive(Q̄i+1,qi,σi) succeeds:
4. Let qi+1, σi+1 be the sampled endpoint.
5. If i+ 1 = N , return the path leading to qi+1, σi+1.
6. If MSP-Recurse(qi+1,σi+1) succeeds, return the path.
7. Return failure

Since the motion planner sequentially plans each sub-task,
the feasibility of one sub-task is affected by the ending
configuration and stance of the last sub-task, which may
have depended on the one before that, etc. The parameter m
controls the amount of effort the planner gives to each sub-
task before backtracking. At one extreme, m = 1 implements
a descent approach with random restarts, which gives up
too quickly; at the other, the planner may get stuck with no
progress. In our tuning, we found the value m = 5 to have
good performance in general.

IV. TRAJECTORY EXECUTION VIA COMPLIANCE
CONTROL

Execution of motion on a physical robot is never perfect.
Errors from calibration, modeling, control, and mechanical
slack result in the robot’s end-effectors being slightly mis-
placed. Furthermore, there are always three or four limbs
in contact with the environment which form multiple closed
kinematic chains. In joint position control mode, DRC-Hubo
tends to use motors controllers with extremely high position
gains, but these high gains tend to result in an over-current
whenever a closed kinematic chain is present, due to the
aforementioned small errors. When a motor detects an over-
current condition, the joint motor controller cuts off power

to the motor to prevent damage to itself and the system as a
whole.

To solve this, we implement a passive compliance con-
troller, which controls the pulse width modulation (PWM)
directly on the motors to adjust output torque according to a
compliant set of position gains. The PWM duty percentage P
is computed using eq. (1), where kP and kD are proportional
and differential gains; xd, xc, ẋc are the desired joint
position, current joint position and velocity respectively; f
is the feedforward term which is intended for investigating
gravity compensation in future work.

P = kP · (xd − xc) + kD · (−ẋc) + f (1)

In the experiments, we keep kD and f as zeros and rely on
the internal friction to damp the motors. kP is used to adjust
the joint compliance.

We enabled compliance on the arm joints which are mainly
used for extra balance support. Leg joints are kept stiff to
support the weight of the body. Passive compliance control
on the arms makes them compliant to tolerate errors. How-
ever, without gravity compensation, compliant joints also
introduce errors in the execution. We mitigate the execution
errors by tuning the compliance gains to control the level
of compliance. Forward kinematics implies that shoulder,
elbow and wrist joint positions have decreasing effects on
the end-effector pose, so we set the compliance gains kP for
arm joints to achieve an increasing level of compliance from
shoulder to wrist.

The compliance control is implemented on Hubo-ach, a
low level controller based on the ACH Inter-Process Com-
munication (IPC) library [15]–[17] developed specially for
Hubo robots.

V. EXPERIMENTS

This section tests the performance of our proposed sys-
tem (see the video supplement). For all timing results, the
planning was carried out on an Intel Core i7 2.8 GHz
machine with 4GB RAM. Simulation results use a custom
simulator based on the Open Dynamics Engine rigid body
simulator, extended with robot sensor / controller simulation
and improved collision handling.

A. Planning on a Variety of Ladders

Our motion planner has been tested with the DRC-Hubo
robot, as well as its earlier version Hubo-II+, on various
ladders using computer simulations. Fig. 8 shows the robot
climbing three different ladders. The motions are generated
within approximately 10–15 s.

We also tested the capabilities of DRC-Hubo to climb
a range of ladders while varying two parameters: rung
spacing in the range [20 cm,35 cm], and incline angle in the
range [70◦, 90◦]. The motion primitive in this experiment
is designed specifically for 80◦ with 25 cm inclination. For
each ladder, we tested our motion planner by utilizing motion
primitives to generate motions for 2-step climbing (see Fig. 7
for the utilized motion primitives). The planner was given a
120 seconds cutoff planning time. Among all the 336 ladders,

2796

Fig. 8. DRC-Hubo climbs different ladders of 30cm rung spacing in
physical simulation. The green shadow indicates the reference motion. (a)
Climbing a regular ladder of 70-degree inclination. (b) Climbing a vertical
ladder. (c) Climbing an A-frame ladder of 60-degree inclination.

72% of them can be solved successfully (see Fig. 9). Due
to the geometry of the foot and ankle, the planner failed at
rung spacings lower than 22 cm because the rung spacing is
not high enough to avoid collision between the ankle and the
higher rung. When the inclination is close to 90◦ and rung
spacing is close to 35 cm, the possible reason of failure is
the set of motion primitives may not be easy to be adapted
to such ladders.

B. Motion Robustness and Error Toleration

We performed three robustness tests. In the first test, we
tested the amount of modeling error tolerable by the hand
on the real robot. Experiments in open-loop mode showed
frequent arm motor shutdown due to excessive torque caused
by control and calibration errors. With the compliant control,
we perturbed the hand position increasingly such that it
deviates from the desired position for gripping the rail. We
found that the hand pose can be adjusted to grip the rail as
long as the rail is within the grasping range of fingers.

Second, we tested in simulation whether the robot can
continue the climbing motion when the rung spacing is
higher or lower than the planned value. On a ship ladder
example, we increase (reduce) the rung spacing 1 cm each
time and run the planned trajectory in the changed scenario.
The results show that the robot is able to tolerate such errors
with up 2 cm variation from the planned rung spacing. At
3 cm, the robot’s foot slips from its intended placement on
the rung and the robot falls over.

In the final simulation test, we dropped an object on the
robot during execution (see Fig. 10). Such disturbances might
occur due to falling debris in disaster environments or under
trees. We gradually increased the weight of the object by
5 kg increments, and the robot is able to withstand a 10kg
impact at speed 5.5m/s. At 15 kg, the robot is unable to hold
onto the ladder and it falls.

C. Climbing a Ship Ladder on Physical Robot

Fig.11 demonstrates our system applied to a standard
industrial ship ladder that is similar to the one in DARPA’s
specifications “DRC Trials Initial Task Descriptions” for the
DRC Trial [8]. The ladder has 5 rungs and a wide top

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

70 72 74 76 78 80 82 84 86 88 90

Planning Results on A List of Ladders

Inclination (degree)

R
un

g
S

pa
ci

ng
 (c

m
)

Student Version of MATLAB

Fig. 9. Testing on a range of ladder inclinations and rung spacings in
simulation. Black indicates motion planner succeeded in planning the two-
step climbing motion within 120 s cutoff time.

Fig. 10. Robustness test (a), (b) A ball of progressively increasing weight
is dropped onto the robot at the speed of 5.5m/s. (c) The robot is able to
continue the motion after hit by the ball of 10 kg. (d) The robot falls down
after hit by the ball of 15 kg.

for dismounting. It is 60◦ inclination, 80 cm rung width,
17 cm rung depth, 25 cm rung spacing and 100 cm rail height.
Planning completed in less than 15 seconds, and the climbing
motion successfully completes in 7 minutes. The robot is also
able to climb back down the ladder simply by reversing the
motion (not shown).

VI. CONCLUSION AND FUTURE WORK

This paper presented a planning and control framework for
ladder climbing humanoid that can be successfully applied
to a wide variety of ladders. The method integrates a motion
primitive-based motion planner with a compliant controller,
and the resulting system is demonstrated to enable DRC
Hubo to successfully climb an industrial ladder.

Several issues remain for ongoing work. We are currently
integrating automated and human-assisted perception into the
system via deformable model fitting, and we are investigating
methods for detecting and correcting for larger execution
errors using visual or tactile feedback. Climbing is also
somewhat slow because quasistatically-stable paths must be
executed slowly to avoid dynamic effects, so we are investi-
gating methods (e.g., [14]) to optimize execution times under

2797

Fig. 11. Snapshots of DRC-Hubo mounting, climbing and dismounting the ship ladder.

dynamic constraints. Finally, we would like to improve the
versatility of the planner to adapt to very different strategies
and scenarios. As an instance of the latter issue, note the
planner failed to solve for a vertical ladder with 35 cm
rung spacing. We cannot tell whether the robot is physically
incapable of climbing this ladder, or the primitive was not
easy enough to adapt. Future implementations may use large
primitives libraries and dynamically select appropriate ones
for the given environment.

REFERENCES

[1] H. lida, H. Hozumi, and R. Nakayama, “Development of Ladder
Climbing Robot LCR-1,” J. Robotics and Mechatronics, vol. 1, no. 4,
pp. 311–316, 1989.

[2] D. Bevly, S. Farritor, and S. Dubowsky, “Action module planning and
its application to an experimental climbing robot,” in IEEE Int. Conf.
Robot. Autom., vol. 4, 2000, pp. 4009–4014 vol.4.

[3] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and
M. Cutkosky, “Whole body adhesion: hierarchical, directional and
distributed control of adhesive forces for a climbing robot,” in IEEE
Int. Conf. Robot. Autom., Apr. 2007, pp. 1268–1273.

[4] H. Yoneda, K. Sekiyama, Y. Hasegawa, and T. Fukuda, “Vertical ladder
climbing motion with posture control for multi-locomotion robot,” in
IEEE/RSJ Int. Conf. Intell. Robot. Sys., Sept. 2008, pp. 3579–3584.

[5] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using mo-
tion primitives in probabilistic sample-based planning for humanoid
robots,” in Workshop on the Algorithmic Foundations of Robotics,
2006.

[6] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion
planning for free-climbing robots,” in Workshop on the Algorithmic
Foundations of Robotics, 2004.

[7] T. Bretl, “Multi-step motion planning: Application to free-climbing
robots,” PhD Thesis, Stanford University, June 2005.

[8] (2013) The darpa robotics challenge website. [Online]. Available:
http://www.theroboticschallenge.org

[9] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. In-
oue, “Dynamically-stable motion planning for humanoid robots,”
Autonomous Robots, vol. 12, pp. 105–118, 2002.

[10] S. Kagami, K. Nishiwaki, J. Kuffner, K. Okada, M. Inaba, and H. In-
oue, “Vision-based 2.5D terrain modeling for humanoid locomotion,”
in IEEE Int. Conf. Robot. Autom., vol. 2, Sept. 2003, pp. 2141–2146.

[11] F. Kanehiro, H. Hirukawa, K. Kaneko, S. Kajita, K. Fujiwara,
K. Harada, and K. Yokoi, “Locomotion planning of humanoid robots
to pass through narrow spaces,” in IEEE Int. Conf. Robot. Autom.,
vol. 1, 2004, pp. 604–609.

[12] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, “Motion
planning for legged robots on varied terrain,” Robotics: Science and
Systems, vol. 27, no. 11-12, pp. 1325–1349, Dec. 2008.

[13] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in IEEE Int. Conf. on Humanoid Robots, Dec. 2005,
pp. 7–12.

[14] K. Hauser, “Fast interpolation and time-optimization on implicit
contact submanifolds,” in Robotics: Science and Systems, Berlin,
Germany, June 2013.

[15] N. Dantam and M. Stilman, “Robust and efficient communication
for real-time multi-process robot software,” in IEEE Int. Conf. on
Humanoid Robots, 2012, pp. 316–322.

[16] M. Grey, N. Dantam, D. Lofaro, A. Bobick, M. Egerstedt, P. Oh, and
M. Stilman, “Multi-process control software for hubo2 plus robot,”
in Proc. Int. Conf. on Technologies for Practical Robot Applications
(TePRA), 2013, pp. 1–6.

[17] D. Lofaro, “Unified algorithmic framework for high degree of freedom
complex systems and humanoid robots,” Ph.D. dissertation, Drexel
University, College of Engineering, Electrical and Computer Engi-
neering Department, May 2013.

2798

