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C
onstruction kits, like LEGO, and embedded
micros can be found in many hands-on robotics
curricula today. Such components enable students
to exercise fundamental concepts like system inte-
gration, mechanism synthesis, and real-time pro-

gramming. When affordable, widely available, and portable,
such components promote learning because students have easi-
er access to hardware. This motivates students and advances
the study of robotics [3].

In recent years, the components to
construct computer vision systems
have also become affordable and
widely available. Video hard-
ware like USB Webcams,
firewire cards, and televi-
sion framegrabbers can
have a positive impact on
computer vision instruc-
tion and research. Such
components could facilitate
lessons on image processing,
visual servoing, and sensor fusion
[5]. Lacking are widely available,
nonproprietary, affordable, easy-to-use,
and customizable software packages. Although
computer vision packages like OpenCV [1] or toolkits like
the MATLAB Image Acquisition Toolbox are available, they
often have steep learning curves or are somewhat expensive
for students. Indeed, there are excellent Linux-based software
for computer vision. Unfortunately, students not majoring in
computer science or computer engineering are often more
familiar with Windows software and have easier access to
Windows-based computers.

This article describes the computer vision software pack-
age called TRIPOD: Template for Real-time Image Process-

ing Development (available at: http://www.mem.drexel
.edu/pauloh.html), and Figure 1 is a screenshot. It was
designed for classroom implementation or self-instruction. To
reach a wide audience, affordable USB Logitech cameras
(The Logitech Quickcam and LEGO Vision Command
Camera are color cameras costing less than US$50), Windows
PC, Microsoft Visual C++ 6.0 compiler, and ANSI C/C++

are used. TRIPOD does not require low-level Windows
programming knowledge. The software pro-

vides a pointer to the frame’s pixel data
to enable one to focus on image

processing. For example, text-
book computer vision algo-

r ithms [4], [6] like Sobel
edge filters and sum-of-
square difference trackers
have been easily imple-
mented in ANSI C on
TRIPOD. 

This article provides a
tutorial to binarize live video

and demonstrate TRIPOD’s
capabilities. A live 20-min demon-

stration of this tutorial was presented in
the 2004 AAAI Spring Symposium on Hands-

on Robotics Education [3]. Over 50 TRIPOD CDs were
distr ibuted to symposium participants, and comments
were positive. TRIPOD was also used to instruct comput-
er vision in high school through a National Science Foun-
dation-sponsored research experience for teachers grant
(NSF EEC Grant 0227700 Research Exper ience for
Teachers in Areas of Innovative and Novel Technologies
in Philadelphia).

The following section provides the coding objective and
then step-by-step instructions and code commentary. To
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conclude, applications developed with TRIPOD, like
visual-servoing a robotic blimp and laser rangefinding, are
briefly presented.

Coding Objective
In computer vision, a “hello world”-type program would
be the generation of a binary image. Here, pixels below a
pre-defined threshold are made black while the remaining
pixels are set white, as shown in the bottom viewport of
Figure 1. Such binarization is often performed as a prepro-
cessing step for algorithms like edge detection and track-

ing. For example, pseudocode to binarize an image can be
the following:

for(row = 0; row < H; row++) {
for(col = 0; col < W; col++) {
if(grayImage[row, col] < threshold) 
/* make pixel black */
binaryImage[row, col] = 0;

else
/* make pixel white */
binaryImage[row, col] = 255;

}
}

where an 8-b grayscale image, grayImage is an 8-b, (W × H)
grayscale image. Here, W is the width (number of columns), H
is height (number of rows) and threshold is a predefined
value, ranging from 0–255, used to generate the binarized
image binaryImage.

Given the popularity of LEGO Mindstorms in robotics
education and experimentation, TRIPOD was designed to
work with the LEGO Vision Command camera. This
Mindstorms product is actually a 24-b color Logitech USB
camera, but its accompanying image processing software is
very limited. To overcome this, TRIPOD interfaces into
Logitech’s free Quickcam software developers kit (QCSDK)
(http://www.logitech.com/pub/developer/quickcam/qcsdk
.exe or http://www.mem.drexel.edu/pauloh.html). TRI-
POD thus permits you to concentrate on writing the com-
puter vision algorithms in ANSI C/C++ and avoid dealing
with low-level Windows programming details like DirectX.

Step-by-step instructions for generating a binarized view
of live video, as shown in Figure 1, follows. This was tested
on a Pentium III 500 MHz, 128 MB RAM running Win-
dows 98 or XP and LEGO Mindstorms Vision Command
camera. Microsoft Visual C++ 6.0 is used and only minimal
MFC knowledge is assumed.

Step-by-Step Instructions
TRIPOD will be used to create a program with two
viewports. The top viewport will display live video cap-
tured by the camera while the bottom viewport displays a
binarized version.

Step 1: Create Win32 Application 
From the menu bar choose File-New and select Win32 Applica-
tion. For the Location, choose C:\tripod and type brinar-
ize for the Project name. Note: the spelling has an “r” in
brinarize.exe). The Win32 check box should be checked.
When your screen looks like Figure 2, click the OK button.

Step 2: Create MFC Project
After clicking OK, choose Empty Project when prompted by
the popup box for a project type. When the Finish button is
clicked, VC++ automatically creates the project’s structure
and makefiles. Click the FileView tab (near the screen’s
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Figure 2. Visual C++ 6.0 screenshot when creating a Win32
application.

Figure 1. TRIPOD’s Windows interface. Top and bottom 
viewports display the live camera field-of-view and processing
results, respectively.
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bottom) and the source, header, and resource folders can be
seen. From the menubar, choose File-Save All and then Build-
Rebuild All. There should be no compile errors since these
folders are currently empty.

Step 3: Applications Folder
Using Windows Explorer, copy the TRIPOD template files
from the C:\tripod folder to the application project folder,
for example, C:\tripod\brinarize

StdAfx.h, resource.h, tripod.cpp, 
tripod.h, tripod.rc, tripodDlg.cpp, 
tripodDlg.h, videoportal.h, 
videoportal.cpp.

The res folder must be copied as well. In VC++, choose
FILE-Save All.

Step 4: Include TRIPOD Files
In VC++, click the FileView tab and expand brinarize
files to see folders named Source Files, Headers Files, and
Resources. Click the Source Files folder once, and then right
click and choose Add Files. Figure 3 should result.

Browse to C:\tripod\brinarize and add tripod.cpp.
Expand the Source Files folder and you should see tripod.cpp
listed as shown in Figure 3(b). Repeat the above, adding the
following files to the Source Files folder:

tripod.rc
tripodDlg.cpp
videoportal.cpp

Next, add the following files to the Header Files folder:

StdAfx.h
tripod.h
resource.h
tripodDlg.h
videoportal.h

Once all these files have been added, the workspace tree
should look like Figure 3(c).

Step 5: Include QCSDK and MFC shared DLLs
The Quickcam SDK include files need to be added to the
project From the menubar, click Project-Settings. Next, click
on the root directory brinarize and then the C/C++ tab.
Under the Category combo pulldown box, choose Preprocessor.
In the Additional Inc lude Director ies edit box, type
\QCSDK1\inc. This results in Figure 4(a).

Next, click the General tab, and under the Microsoft Founda-
tions Class pulldown menu, choose Use MFC in a shared DLL
as shown in Figure 4(b).

Finish off by clicking OK. Next, save all work by clicking
File-Save All. Next, compile the project by choosing Build-
Rebuild All.

Step 6: Add Image Processing Code 
The TRIPOD source, header, and resource files used in the
previous steps grab the color image frame, convert the red,
green, and blue (RGB) pixels into a grayscale value, and store
the frame pixels into a malloced row-column vector. All that
remains is to add image processing routines. The added code
(see Appendix) goes in the tripodDlg.cpp file under the
CTripodDlg::doMyImageProcessing function.

Step 7: Save, Compile, and Execute 
Once image processing algorithms have been implemented,
choose File-Save All and compile by choosing Build-Rebuild
All. Upon successful compile, choose Build-Execute
brinarize.exe. The application should launch, successfully
thresholding and displaying real-time binarized images as
shown in Figure 1.

Code Commentary
TRIPOD files and classes are structured so that image pro-
cessing algorithms can be written in ANSI C/C++ and
inserted in CTripodDlg::doMyImageProcessing (a copy
of which is in the Appendix). This is possible by providing
pointers to pixel data arranged in row-column vector format
that is refreshed at frame rate.

Destination and Source Bitmaps
The variables m_destinationBmp and sourceBmp relate to
pixel data as follows. ANSI C/C++ programmers will recog-
nize that in doMyImageProcessing, the code nested
between the two for loops is ANSI C. m_destinationBmp
is a pointer to an array of pixels and *(m_destinationBmp +
i) is the value of the ith B of the pixel. As will be discussed
in the following, Windows uses 24-b images where each pixel
is composed of three bytes (RGB; i.e., red, green, blue).

The two for loops read, process, and write every pixel
in the image. After cycling through the array, a final
m_destinationBmp results and can be displayed. doMy-
ImageProcessing and displaying m_destinationBmp
runs in real-time (30 frames/s) if the nested code is not
computationally intensive, like simple threshold or centroid
calculations.

The variable m_destinationBmp points to a 24-b
grayscale bitmap. It is 320 pixels wide by 240 pixels high. It is
malloced and created in the function grayScaleThe-
FrameData. In this function, sourceBmp points to the actu-
al pixel data in the 24-b RGB color image captured by the
camera. Being RGB, each pixel in sourceBmp is represented
by three bytes (red, green, blue).

The reason for creating m_destinationBmp is that com-
puter vision developers often use grayscale images to reduce
computation cost. If you need color data, then just use
sourceBmp.

Row-Column Vector Format
An image is an arranged set of pixels. A two-dimensional (2-
D) array like myImage[r,c], where r and c are the pixel’s
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row and column positions, respectively, is an intuitive arrange-
ment, as illustrated in Figure 5(a). For example, myImage
is a (3 × 4) image having three rows and four columns.
myImage[2,1], which refers to the pixel at row 2 column 1,
has a pixel intensity value J.

An alternative arrangement, often encountered in com-
puter vision, is the row-column format, which uses a one-
dimensional (1-D) vector and is shown in Figure 5(b). A
particular pixel is referenced by:

(myImage + r*W + c),

where myImage is the starting address of the pixels, r and c are
the pixel’s row and column positions, respectively, and W is the
total number of columns in the image (width in pixels). To access
the pixel’s value, one uses the ANSI C dereferencing operator:

*(myImage + r*W + c).

For example for r = 2, c= 1 and W= 4, then (myImage +

r*C + c) yields (myImage + 9). In vector form myIm-
age[9], which is the same as *(myImage + 9), has the
pixel value J. 

The row-column format has several advantages over 2-D
arrays. First, memory for an array must be allocated before
runtime. This forces a programmer to size an array according
to the largest possible image the program might encounter. As
such, small images requiring smaller arrays would lead to
wasted memory. Furthermore, passing an array between func-
tions forces copying it on the stack, which again wastes mem-
ory and takes time. Pointers are more computationally
efficient, and memory can be run through the malloc rou-
tine at runtime. Second, once image pixels are arranged in
row-column format, you can access a particular pixel with a
single variable as well as take advantage of pointer arithmetic
like *(pointToImage++). Arrays take two variables and do
not have similar arithmetic operators. For these two reasons,
row-column formats are used in computer vision, especially
when more computationally intensive and time-consuming
image processing is involved.

Figure 3. Clicking FileView enables all files in the Source, Header, and Resource folders to be seen.
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Figure 4. Screenshot after including (a) QCSDK and (b) MFC Shared DLLs.
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24-b Bitmap Images
A 24-b image uses 3 B to specify a single pixel. Often, these
bytes are the pixel’s RGB contributions. RGB is also known as
the Truecolor format since 16 million different colors are possible
with 24 b. As mentioned previously, m_destinationBmp
and sourceBmp are 24-b grayscale and Truecolor images,
respectively. The variable m_destinationBmp makes all 3 B
of a single pixel equal in intensity value. The intensity is a gray
value computed from the amount of RGB in the pixel. As
such ,*(m_destinationBmp + i), *(m_destina-
tionBmp + i + 1), and *(m_destinationBmp + i +
2) are made equal (see the function grayScaleTheFrame-

Data for details). Referring to the “Appendix,” thresholding
sets these three bytes to either black or white.

Bitmaps, the default image format of the Windows operat-
ing system, can be saved to a disk file and typically have a
.BMP filename extension. Bitmaps can also exist in memory
and be loaded, reloaded, displayed, and resized. There are two
caveats to using bitmaps. First, pixels are stored from left to
right and bottom to top; when a bitmap is viewed, pixels
towards the bottom are stored closer to the image’s starting
address. Second, a pixel’s color components are stored in
reverse order; the first, second, and third bytes are the
amounts of blue, green, and red, consecutively. Again, the

Figure 5. Image data represented as (a) a matrix and (b) row-column vector.
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grayScaleTheFrameData function can be referenced to
see this reverse-ordering of color.

Code Operation
The flowchart in Figure 6 shows brinarize.exe’s function
calling sequence. A Window’s application begins with a call to
OnInitDialog. Code here initializes the sizes for the two
videoportals. A call to allocateDib allocates memory to
display both the image captured by the camera and the image
resulting from doMyImageProcessing, like binarizing.

The Logitech SDK defines a variable flag called NOTIFI-
CATIONMSG_VIDEOHOOK and goes true whenever the camera
acquires a new image frame. After OnInitDialog, the code
in OnPortalNotificationProcessedview checks for
this flag and executes. Here, the code then assigns the pointer
lpBitmapPixelData to the frame’s pixel data, grayscales the
color image, and executes any computer vision algorithm
stored in doMyImageProcessing. The image processing
results are then displayed through displayMyResults
which uses the MFC function StretchDIBits to stretch a
device-independent bitmap image to fit the videoportal’s dis-
play window. If doMyImageProcessing is not computa-
tionally time-consuming, OnPortalNotification-
Processedview will execute at 30 frames/s.

Beyond binarized images, edge detection, laser rangefinder
(Figure 7), binocular vision, multicamera views, tracking, and
counting objects have been tested and implemented with
TRIPOD.

Applications
The author’s lab uses TRIPOD to quickly prototype code for
tasks like vision-based tracking, navigation, and ranging. Two
or more USB cameras can be used to develop applications
involving stereo vision or multiple fields-of-view. This section
highlights the lab’s successes in visually servoing a robotic
blimp and creating a low-cost laser rangefinder.

Visually Servoed Robotic Blimp
The Drexel University Autonomous Systems Lab (DASL) has
been developing sensor suites for aerial robots. TRIPOD was
used to help characterize computer vision for aircraft naviga-
tion. Figure 8 depicts a 5-ft airship that features two thrust
motors to translate or pitch and one rudder motor for yawing.
The goal was to visually servo the blimp by following a 20-ft
line painted on the ground. 

TRIPOD, which currently only works with USB Log-
itech cameras, was used to prototype visual-servoing algo-
rithms. The code was then ported to third-party software (for

Figure 7. TRIPOD screenshots in an office: (a) detecting edges and (b) acquiring range measurements.
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example, an ActiveX control like Video OCX http://
www.videoocx.de) for the blimp’s wireless camera.

Thresholding live video, line orientation was estimated by
measuring the centroid of the top and bottom halves of the
image. Originally, both bang-bang and proportional con-
trollers were tested; however, the blimp’s large inertias yielded
poor performance. Blimp dynamics [2] were incorporated,
and a proportional-derivative controller was designed to 
successfully follow the line, as shown in Figure 8.

Laser Range-Finding
A Webcam and off-the-shelf laser pointer were combined to
develop a rangefinder programmed under TRIPOD as shown
in Figure 9(a). Here, the Webcam’s optical and the laser’s pro-
jection axes are made parallel. The distance between the axes
h is configured thus defining a baseline. The brightest pixel in
the image plane u corresponds to the target’s reflection of the
laser beam and hence the camera-to-target range D can be
calculated. Figure 9(b) depicts the setup and notation from

which one has

D = h
tan θ

, (1)

where θ is calculated with the horizontal pixel location u,
radians per pixel pitch rp, and radian offset ro, as

θ = u rp + ro. (2)

The net effect is that the closer u is to the image center,
the further the target is. The parameters rp and ro are deter-
mined by calibrating with known target distances. A linear
relationship and a flat focal plane were assumed in (2), which
worked reasonably well. Indoor tests with targets less than 200
cm yielded measurement errors of 0.78–7%. The Logitech
Webcam has significant lens distortion. Measurements can be
improved using calibration algorithms [7], Kalman filtering,
or similar estimator.

Figure 8. (a) A robotic blimp is released. (b) Yaw and thrust is visually servoed by tracking a
black line on the floor. (c) It reaches its goal location. (d)–(f) Corresponding raw and
processed images also displaying commands to yaw left or right.
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Appendix
Source code for the doMyImageProcessing function. Pixel processing, thresholding for example, occurs in the nested for loops.

void CTripodDlg::doMyImageProcessing (LPBITMAPINFOHEADER lpThisBitmapInfoHeader)
{
// doMyImageProcessing: This is where you�d write your own image processing code
// Task: Read a pixel�s grayscale value and process accordingly

unsigned int W, H; // Width and Height of current frame [pixels]
unsigned int row, col; // Pixel�s row and col positions
unsigned long i; // Dummy variable for row-column vector
BYTE thresholdValue;  // Value to threshold grayvalue
char str[80]; // To print message 
CDC  *pDC; // Device context need to print message
W = lpThisBitmapInfoHeader->biWidth; // biWidth: number of columns
H = lpThisBitmapInfoHeader->biHeight; // biHeight: number of rows

// In this example, the grayscale image (stored in m_destinationBmp) is
// thresholded to create a binary image. A threshold value close to 255 
// means that only colors close to white will remain white in binarized 
// BMP and all other colors will be black

thresholdValue = 150;

for (row = 0; row < H; row++) {
for (col = 0; col < W; col++) {

// Recall each pixel is composed of 3 bytes
// i increments 3 bytes in each column of image data
i = (unsigned long)(row*3*W + 3*col);

// Add your code to operate on each pixel (recall there are 3-bytes per
// pixel. For example *(m_destinationBmp + i) refers to the ith byte 
// in destinationBmp.

// Note: destinationBmp is a 24-bit grayscale image.  It is generated
// by the grayScaleTheFrameData function found in tripodDlg.cpp.
// You must also apply
// the same operation to *((m_destinationBmp + i + 1) and 
// *((m_destinationBmp + i + 2).

// Threshold: if a pixel�s grayValue is less than thresholdValue
if( *(m_destinationBmp + i) <= thresholdValue) 
*(m_destinationBmp + i) = 
*(m_destinationBmp + i + 1) = 
*(m_destinationBmp + i + 2) = 0; // Make pixel BLACK
else
*(m_destinationBmp + i) = 
*(m_destinationBmp + i + 1) = 
*(m_destinationBmp + i + 2) = 255; // Make pixel WHITE

}
}

// To print message at (row, column) = (75, 580). Comment if not needed
pDC = GetDC();
sprintf(str, �Binarized at a %d threshold�, thresholdValue);
pDC->TextOut(75, 580, str);
ReleaseDC(pDC);
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Conclusions
A free and open-source software package called TRIPOD was
presented in this article. A step-by-step tutorial was given, and
applications like laser rangefinding and visual servoing were
showcased. The motivation for TRIPOD stemmed from
observations that affordable, widely available, and portable
components, like LEGO, have made a strong impact on robot-
ics. Suitable software, when combined with affordable video
hardware, can similarly affect computer vision; a USB camera
and freeware can give students and developers a hands-on tool
to prototype computer vision code in or out of the lab.
Towards this goal and to reach a large audience, TRIPOD was
designed to work with USB Logitech cameras on Windows
98 and XP computers and requires only programming in
ANSI C/C++. Beta versions of TRIPOD have received pos-
itive feedback by several university robot labs, including Drex-
el, Columbia, Harvard, Texas A&M, Brown, Carnegie
Mellon, and Rutgers universities and the University of South-
ern California, and were showcased at the 2004 Robotics
Education AAAI Spring Symposium at Stanford University.

Indeed, there are other computer vision packages for Win-
dows. The Intel OpenCV [1] and Microsoft’s Vision SDK are
powerful packages but have steep learning curves. Commer-
cially available packages also exist but often are proprietary and
involve runtime licenses. As such, they do not lend themselves
to use outside research and teaching labs. The MATLAB
Image Acquisition Toolbox appeared on the market in 2002
and is an excellent and useful package. The student version is
affordable, but runtime performance is slow. Speed can be
enhanced using a MATLAB C compiler, but this then requires
more programming knowledge. TRIPOD only requires ANSI
C/C++ knowledge because its template shields the program-
ming from low-level Windows programming details.

Keywords
Computer vision, robotics, USB cameras, LEGO, real-time,
image processing.
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Figure 9. (a) Webcam and laser pointer combined into a handheld unit. (b) The camera-to-
target distance D can be calculated given the pixel location u, baseline h, and angle θ .
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