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Abstract— In order to engage in useful activities upright legged
creatures must be able to maintain balance. Despite recent
advances, the understanding, prediction and contrel of biped
balance in realistic dynamica! situations remain 2n unsolved
problem and the subject of much research in robotics and
biomechanics.

Here we study the fundamental mechanics of rotational sta-
bility of multi-body systems with the goal to ideniily a general
stability criterion. OQur research focuses on Hg, the rate of
change of centroidal angular momentum of a robot, as the
physical quantity containing its stability information. We propose
three contro! strategies using H ¢ that can be used for stability
recapture of hiped robots.

For free walk on horizontal ground, a derived criterion refers
to a point on the foot/ground surface of a robot where the total
ground reaction force would have to act such that H o = 0. This
new criterion generalizes earlier concepts such as GCoM, CoPF,
ZMP, and FRI point, and extends their applicability.

1. INTRODUCTION

Balance maintenance is a central concern for all legged crea-
tures. Balance is largely synonymous with tip-over stability,
dynamic stability, and postural stability and it refers to the
preservation of overall rotational stability. A loss of stability
might result in a fall with a potentially disastrous consequence
for both robots and animals. Understanding, prediction and
contro] of stability is therefore of crucial importance for the
overall performance of biped robots.

Precise and universally accepted definitions of stability that
is applicable to the gait and posture of biped robots remain
elusive [1], [2]. In general, a locomotion mode is understood
to be stable if 1t is sustainable without a fall, and if it allows
a safe return to a statically stable configuration. Although
intuitively meaningful, this definition is not rigorous from the
point of view of mechanics. Body stability, body path stability
and stationary gait stability [3] are among the most pragmatic
stability definitions but they refer rather to the repeatability of
a gait pattern in the sense of orbital stability.

As a practical matter, one has to track a robot’s stability
at every instant, i.e., given a specific posture and motion one
has to estimate how close the robot is to instability. For this
purpose we need a quantity or “measure” that is simple, yet
powerful enough to capture the essence of rotational stability,
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and has a sound physical basis. Using updated states the robot
controller can continuously update this measure and take steps
1o keep it within prescribed safe limits. This paper suggests
that H¢, the rate of change of angular momentum of the
entire robot computed at its center of mass (CoM) G, is such
a measure.

Rotational stability problems are inherent to legged crea-
tures that interact with the world through unpowered unitateral
contacts, as succinctly pointed out in [4]. Indeed, our position
is that the application point, direction and pattern of the
resultant ground reaction force (GRF) and moment during
different activities deserve careful study [5], [6). As we see
below, H g is closely related to the GRF and moment.

II. HIGHLIGHT OF THE METHOD

This paper explores and exploits a fundamental principle of
mechanics [7] which states that the resultant external moment
on a system, computed at its CoM, is equal 1o the rate of
change of its centroidal angular momentum Ff¢;. A rectilinear
system is considered stable if the external forces sum up to
a zero resultant force. Similarly, a biped robot is considered
rotationally stable if the external forces and moments sum up
to a zero centroidal moment. This also means Hg = 0 and
the angular momentum of the system is conserved. Note that
a rotationally stable single rigid bedy has a constant angular
velocity and zero angular acceleration.

For a legged robot external force/moments may arise from
gravity, ground contacts, additional contacts and interactions,
or unexpected disturbances. The essence of our approach is
schematically described in Fig. 1 for a biped robot on a
horizontal ground. :

The robot is subjected to a resultant GRF, R acting at
the center of pressure (CoP) denoted by point P. Due to
unilaterality of the GRF, P is always located within the
convex hull of the foot support area. In Fig. la the GRF
passes through the CoM and consequently generates a zero
moment!. Thus Hg = 0 and the robot is rotationally stable.

INote that mg, the only other external force, always passes through G
and produces zero centroidal moment. This is an advantage of computing
moments at G.
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Fig. 1. This figure describes the essence of stability analysis based
on H g and introduces the concept of ZRAM point. In Fig. 1a the
resuitant GRF, denoted by R, passes through the CoM, denoted by
G. Thus Hg = 0'and the robot is rotationally stable. In Fig. 1b the
GRF generates a net non-zero moment around the CoM and Hg =
G P x R. This signifies a tendency of the robot to tip-over. If we
laterally shift the GRF to act along a different line of action passing
though the CoM, H ¢ would reduce to zero and the robot would be
stable. This is depicted in Fig. 1b where A is the point of intersection
of the ground and the shifted (imaginary) GRE. We use the distance
P A as a measure of rotational instability. A is called the ZRAM point
(Zero Rate of change of Angular Momentum). Obviously, PA = 0
when the robot is stable,

In Fig. 1b however, the GRF does not pass through the CoM
thus generating a net clockwise moment around the CoM, We
have Hg = GP x R # 0. This implies the tendency of the
robot to tip forward.

Human beings do not have a direct control over GRF but
must modulate it through dynamic coupling [4). This coupling
is performed rather judiciously to take advantage of gravity.
In normal walking, depending on the part of the gait cycle,
the GRF may or may not pass through the CoM [8]. In an
interesting example {9] shows that during the take-off phase
of forward running somersault GRF has a significantly off-
centroid direction. This is useful in creating a large H ¢ which
is what is precisely required for the task.

Let us note that GP x R = 0 implies GP is parallel
to R, GP}|R. This may be achieved in various ways as
described in Section V. Here we consider an imaginary shift
of the line of action of R in order to geometrically satisfy
GP x R = 0 (sce Fig. 1b). Viewed differently, an unstable
biped (He # 0) could be stabilized by shifting the GRF
line of action appropriately such that it passes though the
CoM. This also causes the GRF line of action to penetrate
the ground at a different point, and this point might not lie
within the convex hull of the foot support area. If the GRF
were to act through this shifted point (point A in Fig. 1b),
while maintaining its original direction, H ¢ would reduce to
zero. We name point A the ZRAM point (Zero Rate of change
of Angular Momentum). The actual position of the ZRAM |
point will clearly depend on the geometry of the ground as

¢} Stairs

d} Uneven ground

Fig. 2. Location of the ZRAM point, denoted by A, for four different
ground geometries. The ZRAM point is located at the intersection of
the ground surface and a laterally shifted GRF such that it passes
through the CoM, ensuring He = 0.

schematically depicted for four different situations in Fig. 2.

ZRAM point possesses several advantages as a stability
measure for biped robots. It is important to not lose sight
of the fact that it is H that contains stability information of
the robot, ZRAM is derived from H. ¢, and one may perhaps
derive other such criteria. The robot controller may be used to
directly control H ¢ or one of the derived quantities. Angular
momentum rate change is physically central to rotational
instability and intuitively more transparent to the phenomena
of tipping and tumbling. Even when the support surface is
non-planat, and CoP and ZRAM points are not well-defined,
H  remains valid for stability quantification.

The next section reviews the literature of biped robot
stability relevant to this work. In Section IV we introduce
and analyze the central concept of this paper, F g, computed
for a general robot. We also look at several special cases, and
relate existing stability criteria to ZRAM. Finally in Section V
we propose three H -based control strategies to restore biped
stability.

IIT. BACKGROUND LITERATURE
A. Biped robot stability criteria
Biped robot stability measures that are manifested as a point
on the ground surface are a) CoP or ZMP and b) FRI point.
The concept of CoP has been well-exploited during the last

three decades. CoP, which is also known as ZMP [3], [10] in
robotics, has been extensively used to analyze, predict, and
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control postural balance in biped robots [1], [11]-[17]. CoP is
the point of application of the. resultant GRF underneath the
biped feet. For a non-planar support surface CoP is not well-
defined prompting researchers to extend the method [18]. The
so-called "ZMP stability criterion”™ states that for the upright
body to be stable the CoP must lie strictly inside the support
polygon. "Walking” must involve a foot touching the ground,
which immediately brings into existence a CoP. When there
are additional environmental forces on the robot body CoP
looses its original implication.

The ZMP literature provides a means to analytically com-
pute, as opposed to experimentally measure (which is common
in biomechanics), the CoP position. In a typical use, the robot
controller ensures that the CoP resides at the most central
location inside the support polygon [14].

Although CoP can guantify the stability margin of stable a
robot, it cannot do so for an unstable robot. The FRI point
concept [2] is an extension of the CoP concept in that it
can additionally perform the role of an instability measure
of a biped. While CoP cannot leave the support polygon,
FRI point can. The FRI point, however, is related to the
phenomenon of foot rotation, and is applicable only during
the single support phase of a biped. While one may argue
that practically all instabilities occur during the single support
phase a generalization of the FRI point will be welcome.

B. Stability and angular momentum

[19], [20] are among the first to explore angular momentum
for biped robot control. In both papers the robot “system”
excluded the stance foot. This rendered the ankle torgue as an
external effect and allowed the control of centroidal angular
momentum.

The dynamic balance compensation scheme {21] noted the
importance of angular momenturn and imposed maximum and
minimum limits on it. Very recently, the relationship between
ZMP and angular momentum was used for whole body tele-
operation of a humanoid robot [22]. With the objective of
controlling ZMP through linear and angular mementa, ZMP
was expressed in terms of the latter quantities. This work was
extended to resolved momentum control [23].

We strongly agree with the view that angular momentum
can be exploited for general motion planning of legged robots.
In this paper our focus is somewhat different, we wish to
underline the relationship between angular momentum and
biped stability.

IV. ANGULAR MOMENTUM RATE CHANGE FOR A GENERAL
BIPED

A. The general case

The robot (refer to Fig. 3) feet are assumed to be on two dif-
ferent planar support surfaces and subjected to force/moments
F/M, (left foot) and F',/M . (zight foor). M, and M, are
normal to the respective support surfaces which are oriented
in a general way in the 3D space. Consequently, each M,
and M, has one non-zero component along the respective

Fig. 3. General configuration of a biped robot under interaction
force/torque from ground and environment. The biped feet are posed
on two different planar surfaces and are subjected to individual
force/moment pairs from each, F'; /M (left footy and F,./ M ,. (right
foot). The biped interacts with the environment through individual
force/moments at the hands, @, /o at left hand and Q. /o, at right

hand. There can be unexpected interaction forceftorque Q,/o; active "~

at any arbitrary point on the robot body. CoP is not well-defined, nos,
are FRI point and GCoM in this case. H ¢ can however successfully
determine the state of stability of the biped. An arbitrary inertial
coordinate frame is shown situated at O. .

surface normals. Robot hands are similarly: subjected to a
completely general force/moment Q,/o; (left) and Q.. /o,
(right). Due to the hands” grasping capability, &; and o,
are not constrained to be normal to any surface. Additionally,
the robot is assumed to be engaged in realistic activities and
subjected to any number of expected or unexpected interaction
forcefiorque €;/or; from the environment. Without loss of -
generality we suppose that there are m forces Q; and p
moments o; acting at arbitrarily different points on the robot
body. S; is the point of application of Q,. Moments are free
vectors and their application peints are irrelevant for system
dynamics.

The equation for translational dynamic equilibrium can be
written as:

” Lo n -
R+ Re+3 mig+3 Q=) mia; M
i=1 =1 t=1
and may be reduced to
R+mg+Q=ma 2)

where R = R; + R,, m = §_;.; m; is the total mass of the
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robot located at CoM, Q = Y -, Q; is the resultant of all
the external non-ground forces and a is the acceleration of the
CoM. Eq. 1 can be solved for the magnitude and direction of
R but not the location of its line of action. From this equation
alone we cannot determine whether R passes through G or
not. For that we need to solve the moment equation.

The moment equation must be formulated either at the robot
CoM or at any inertial reference point. Taking moments about
an arbitrary inertial point O, we have

P
M+ M, +OP, x Ri+OP. x Re + Y _ 0oy

i=1

m n
+3 08:xQ;+)_ OGixmg
i=1
L) n k3
=EH9=EHG|'+EOG,‘X1’R;'G¢ 3
=1 i=1 i=1

i=1

where H; is the centroidal angular momentum of the "

segment,
%Eq. 3 may be reduced to

m
M+OP xR +OP xR +a+3 08 xQ,+OG xmg
i=1

=Hg+0G xma &)

where M = M+ M,, =3, 0; and Hg=YHg+
EGG, X miaQ;.

Taking moments about the CoM &, we have the simpler
equation

M+GP x Ri+GP, xR +o+ 3y GSixQ; = Hg (5
i=1
Eq. 5 forms the basis of analysis and control of balance in
biped robots.

B. Discussion

In a general setting we have to re-evaluate the validity of
assumptions that are made in special sitwations. Although a
common practice, it is, in general, improper to ignore the
ground reaction moment M in Eq. 5 because it may contribute
towards robot tipping. This becomes clear if we imagine a
biped standing with two feet on two rock surfaces, none of
which is horizontal. The normais to these surfaces are not
vertical and foot/ground frictional moments generated due to
these surfaces can act to weaken or strengthen stability.

Considered vital to terrestrial locomotion, the gravity term
mg does not appear in Eq. 5. Although this is caused by
our specific choice of moment center, G, it is instructive
to realize that gravity is not an integral part of rotational
instability. In fact one may deliberately set mg = 0 in Eq. 4 to
perform stability analysis of a spacewalker inside an orbiting
satellite. As the person navigates using both hands and feet
while floating in space Hg reliably provides the stability
information. Similar mechanics is applicable to skyscraper
window cleaning robot that is suspended from above by a
cable to compensate for self-weight.

We should also point out that the LHS of Eq. 5 is a collec-
tion of all the centroidal moments, regardless of their origin.
As such, the reaction force/moments at the feet are not special
and have analogous effects as the reaction force/moments at
the hands or at any other location of the robot body. This is
aligned with the spirit of humanoid robots performing realistic
and more useful functions, and especially using hands. In order
to incorporate hand interaction forces, traditional definition
of ZMP was augmented [24] and imaginary surfaces were
constructed [25]. Hg may be used unchanged throughout
interactions of all types.

In a radically different application rotational stability of
planar parts is closely studied for automated triage and parts
feeding [26]. H may be used to analyze the turning of these
parts on a horizontal treadmill caused by friction, inertia and
constraint forces,

C. Simpler case - free biped walk on level ground

Eq. 5 is fairly general except for the support surface beneath
individual feet assumed planar. Given specific situations we
may relax certain conditions to obtain simpler versions of Eq. 4
and Eq. 5. What follows in the remainder of this section is the
exploration of H and its derived condition, ZRAM for the
special case when, & = 0, Q; = 0, left and right feet are posed
on the same horizonial plane, and M has a non-zero vertical
component that does not contribute to tipover instability. Under
these conditions R = R; + R, is the resultant GRF passing
through P, and Eq. 4 reduces to

OPx R+ O0Gxmg=H,=Hg+0OG x ma ()

Characteristics of ZRAM point:
Moments taken at G results inn an especially simple result:
GP x R=Hg 0

In general, H; = GP x R # 0. But let us suppose that
there is a point A on the ground such that GA x R = 0.
Point A is called the ZRAM point and is found by projecting
robot’s CoM along the resultant force [27], [28] {see Fig. 1).

The ZRAM point has two characteristics: 1) GA||R and
2) AP x R = Hg. Longer is the distance AP larger is the
amount of moment on the robot’s CoM and larger is Hg.
Conversely, as A gets closer to P, the amount of unbalanced
moment at the CoM is also reduced, and finally becomes zero
as the ZRAM point coincides with CoP. Note that H 4 # 0.

Recall that FRI point is a point on the foot/ground contact
surface where the net ground reaction force would have to
act to keep the foot stationary [2]. To ensure no foot rotation,
the FRI point must remain within the convex hull of the foot
support area, Refer to Fig. 4.

The distinet advantage of the ZRAM point over FRI point
is that the former is not defined on the basis of physical
foot rotation and is therefore valid during both the single and
double support phases of walking.
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Fig. 4. The figure shows all the force and torques active on a robot
foot. There are the ground reaction force R and moment M, the
gravity force mig and the ankle forceftorque — Ry /T; representing
interaction from the rest of the robot.

V. CONTROL STRATEGIES

This section outlines three control strategies that may be
used to recapture balance. Each strategy attempts to make
Hg = 0 in a specific way. In this section we will allow
interaction forces ¢ and €. With this relaxed condition Eq. 6
may be re-written as:

GPxR+0+) GS:xQ,=Hg @
i=t
Compare this equation with Eq. 5. Since the interaction forces
are beyond direct control of the robot, it can attempt one of
three things: .
1) Enlarge support polygon such that it encompasses the
ZRAM point A.
2) Move G with respect to P such that R passes through
G in its new location G'.
3) Change GRF direction by means of changing the cen-
troidal acceleration a to a'’.

To enlarge support polygon:

Let us suppose that IJK LM is the current support polygon
and that the side JK requires an outward shift by an amount
d in order to just include the ZRAM point A (see Fig. 5). This
can be achieved be re-deploying the foot at a distance d.

We can write

GJ =GJ+d(kxe) ©

where e = -4 i and k is a unit vector perpendicular to
the plane of support polygon if it is planar. Otherwise k is a
unit vector normal to the plane containing JK and J'K. d
can be expressed as:

_ —€¢-[GJx R+ o]

e [hxe) < B 4o

Direction of walk

N\

Fig. 5. In this figure IJK LM is the support polygon and R acts
through P. Since I does not pass through G, it creates a non-zero
moment. The ZRAM point is at A outside the support polygon. If
the side JK shifts outward by a distance 4 it would recapture A,
thereby making f¢c = 0.

To move :

Suppose that when G moves to a different position G’ it
satisfies H g = 0. In other words,

m
G'PxR+o+) G'SixQ=0 Ay

i=1
and from Eq. 8 and Eq. 11 we obtain, by setting GP =
GG +G'Pand GS; = GG' + G'S,,

GG x(R+Q)=Hg 12

Eq. 12 is of the standard form A x B = C and can be
solved for A. The support stability indicator [29] applies a
similar concept for multi-legged robots.

To change GRF direction:
Let us rewrite Eq. 8 by setting R = ma —mg — @,

GPx(ma—mg—Q)+u+ZGS,~in=Hc; (13}

i=1

Suppose that Hg = 0 is obtained by changing ma to ma’'.
From Eq. 13 we get

"
GPx(ma'—mg—Q)+o'+EGS,;XQ,.:O

i=1

(14)
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From Eq. 13 and 14 we get,

GP x ma' = GP x ma - Hg (15)

We again find the standard form A x B = C' where
A=GP,B=mqa and C = GP x ma — Hg. We can
subsequently solve for ma’.

VI. CONCLUSION AND FUTURE WORK

We have re-affirmed that the rate of change of centroidal
angular momentum H ¢ is a useful criterion for the analysis
and control of postural balance in biped robots in a very
general situation. Loss of balance implies that H 7 is non-zero.
We have also introduced the ZRAM point, a stability measure
derived from H¢ and is applicable to walking on planar
surfaces. Finally we have outlined three control strategies that
may be used for balance recapture.

Although H; indicates an overall centroidal moment (and
hence "angular acceleration”) this does not directly indicate
an imminent fall. For that, one must have the knowledge of
the angular momentum H . The directions and magnitudes of
Heg and H g together will determine the rotational behavior
of the robot.

Efficient computation of the two quantities H ¢ and Hg
is of vital necessity for a good balance controller. These
quantities are functions of the robot’s link geometry, mass,
and inertia properties, as well as the angular position, velocity
and acceleration.

Although we use a biped robot as a concrete example, our
approach is completely general and applicable to multi-legged
robots as well.
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