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Abstract— Automation in construction continues to be a topic
of interest for many in industry and academia. However, the
dynamic environments presented in construction sites prove
these tasks to be difficult to automate reliably. This paper
proposes a novel method of teleoperation for multiple hetero-
geneous robots within a construction environment. The system
is achieved by creating a virtual reality interface that allows
an operator to control multiple robots both synchronously and
asynchronously. Feedback is provided from an array of RGBD
cameras, force sensors, and precise odometry data. The DRC-
Hubo and Spot robot platforms are used for implementation
and experimentation. Experiments include useful tasks for
construction including item manipulation and item delivery
of tools and components. Results demonstrate the feasibility
of implementing the system in a construction environment,
including trajectory comparisons, task learning curves, and
successful multi-robot collaboration.

Index Terms— Robots in Construction, Telerobotics, Virtual
Reality, Humanoids, Quadrupeds, Human-in-the-loop.

I. INTRODUCTION
A study by the McKinsey & Company consultancy found

that compared to the manufacturing and agriculture indus-
tries, the construction industry has suffered in value-added
growth and global productivity due to lack of innovation in
construction practices and methodologies [1]. This lack of
innovation has caused the construction industry to experience
a severe labor shortage in the past decade [2]. In an effort to
increase construction efficiency and encourage wage growth,
automation can be utilized across the field of construction in
conjunction with new technologies such as modular construc-
tion, large-scale 3D printing, and smart building information
management (BIM). However, this automation is still an
open problem when the dynamic environments of traditional
construction sites are considered.

While automation has made substantial progress in the
past decade, current robotic platforms show difficulty to
automate tasks and roles in construction in a way that would
allow for dynamic adaptation. The team previously competed
in the 2015 DARPA Robotics Challenge (DRC) in which
robots had to perform complex manipulation and locomotion
semi-autonomously. The results demonstrated that the team’s
approach was largely dependent on pre-planned trajectories
within ideal conditions [3], and even under these conditions
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Fig. 1: Collaborative task between DRC-Hubo and Spot

movements were slow. The team concluded that more work
was needed to ensure that manipulation by these semi-
automated humanoid robots could handle tasks more dynam-
ically. Introducing a human-in-the-loop control method for
these construction robots allows them to perform safely in a
dynamic construction environment, especially when working
with other human workers.

Transporting and handling construction items is one of
the most common forms of injuries [4]. These forms of
injuries consist of sprains, back pains, cuts, and even amputa-
tions. Therefore, usage of humanoid robots operated through
human-in-the-loop control could prevent injuries while still
being advantageous because of their human form giving them
the ability to maneuver in human-centered environment and
handle human-operated tools. Furthermore, current methods
of transporting materials to various places on the construction
site require workers to navigate obstacles, as well as rough
terrain. Instead, having an automated platform to transport
materials from site-to-site can reduce workplace injuries.
Traditional mobile robots used for transportation, such as au-
tomated guided vehicles, are severely limited by terrain and
obstacles. Additionally, safety is paramount in a construction
site. A robot that is not able to avoid obstacles would pose
a serious threat to itself and human workers.

Companies such as Tesla see value in adding robots
in the construction environment due to the benefits they
could offer. The team has partnered with the company
to automate building construction scanning using the Spot



quadruped robot from Boston Dynamics, seen in Fig 1. The
safety and flexibility offered by a quadruped robot such as
Spot is on many levels similar to collaborative robots that
are designed to work together with humans. Unfortunately,
Spot has limited payload and does not currently have a
manipulator attached, so it has limited capabilities in the
construction environment. Therefore, it is advantageous to
deploy a quadruped robot for item delivery and a humanoid
robot for item manipulation in the construction field. This
heterogeneous approach will allow for multiple different sets
of tasks to be performed through a virtual teleoperation (VT)
framework instead of through human workers.

The demand for teleoperation, in which an ”avatar” re-
ceives commands and provides feedback to the operator, is
expected to increase in the next decade. Improvements in
communication, such as 5G, are making it possible for com-
panies such as Doosan to teleoperate construction equipment
[5]. These technological breakthroughs are providing oper-
ators with dynamic capabilities when teleoperating robotic
platforms. The authors, seeing a demand for teleoperated
robots in construction, are working towards the ANA Avatar
XPRIZE Challenge. All Nippon Airways (ANA), one of
many companies preparing for a future with teleoperation,
has created the $10 million ANA Avatar XPRIZE competi-
tion as a way of driving humanoid telepresence technology
forward. The scope of this competition encompasses numer-
ous applications, with construction being just one of many.
However, when combined with the team’s previous efforts in
the DRC and current work in construction inspection with
Tesla, the XPRIZE challenge serves as an opportunity to
test and develop new human-in-the-loop control methods for
robots in construction.

II. LITERATURE REVIEW

Manufacturing and construction industries are trying to
integrate humanoids into their day-to-day operations. How-
ever, hardware liability and limitation are an ongoing issue.
For instance, Stasse et. al. [6] introduced the humanoid
TALOS (prototype Pyrene uses electric motors) as an in-
dustrial friendly robot aimed for aircraft manufacturing en-
vironments. Additionally, the authors of that work chose
the Gazebo/ODE and OpenHRP/AIST dynamics engine for
low-level dynamic simulations and kinematic computations
respectively. Three main simulations and experiments were
conducted: holding weights with outstretched arms, walking,
and climbing stairs. Such a robot could be deployed in
industrial facilities where it can perform fairly limited tasks
alongside human workers. These scenarios often present a
high risk for humans to work with robots. Therefore, this
paper seeks to improve teleoperation and robot-robot cooper-
ation where the human worker would be in a safe, controlled
environment, but still in full control of the robot(s).

More recently, there is a body of research involving the use
of virtual reality equipment for teleoperation of humanoid
robots in difficult manipulation tasks. Lipton et. al. [7]
demonstrated that new users operating a virtual reality tele-
operation system for the Baxter robot were faster and more

accurate than an automation algorithm and direct control.
Allspaw et. al. [8] noted that introducing 3D point cloud
data into virtual reality significantly improved an operator’s
awareness of environment and overall performance. Penco
et. al. [9] solved the problem of loco-manipulation tasks
by introducing a low-level direct whole-body control and
a high-level velocity control for locomotion. Lee et. al.
[10] demonstrated that the introduction of virtual fixture
into virtual reality teleoperation improve the accuracy of
operator’s control. In each of these works, virtual reality
assisted operators were introduced to complete tasks that typ-
ically require human-level dexterity using humanoid robots.
Thus, it is determined that virtual reality is desired for the
teleoperation of a humanoid robot in dynamic environments.
However, these state-of-the-art methods do not include oper-
ation of heterogeneous robots using their virtual teleoperation
framework.

Improvements in virtual reality technology has allowed
for research on teleoperation of robotic equipment on the
construction site to become a subject of interest. Tanimoto,
Shinohara, and Yoshinada created an architecture for teleop-
erating construction machinery that would increase efficiency
[11]. Their research demonstrated that trajectory control was
more accurate than manual control, especially since the
operator did not have 3D visual feedback of the environment.

To achieve teleoperation of a humanoid robot in a dynamic
environment, the operator often needs synchronous control
of manipulators to accomplish dexterous tasks. Therefore, a
swift and robust algorithm for calculating the inverse kine-
matics of manipulator(s) is required. Traditional Jacobian
based numerical methods for solving inverse kinematics have
various disadvantages that limit their application in real time
robotic systems. In particular, the Jacobian method often
suffers from local extrema configurations and the singularity
problem [13] [14]. This leads to failure of the algorithm to
converge on an optimal configuration. In this regard, Genetic
Algorithms (GA) and Particle Swarm Optimization (PSO)
offer better solutions because they are largely unaffected by
the kinematic configuration of the robot [15] [16] [17].

The core concept behind GA is to replicate biological
evolutionary processes by iteratively refining a population of
individuals (potential solutions) through a fitness or objective
function, and then performing genetic crossover on the
surviving individuals to populate a more qualified population
[18]. Similarly, PSO simulates the behavior of a flock of
birds landing on a small field by adjusting each solution
with gradients of global best and personal best solutions
using a fitness function [19]. The two iterative algorithms
can be combined to quickly converge on the solution of
an inverse kinematics problem. In this paper, the GA and
PSO are preferred over traditional Jacobian method due to
their versatility in incorporating additional parameters such
as self-collision avoidance and velocity & acceleration limits
to achieve real-time control that is capable of operating in a
complex environment.



III. METHODOLOGY

This section discusses the methodology used in inverse
kinematics for the synchronous operation of a humanoid
robot using the virtual teleoperation (VT) framework. Addi-
tionally, an overview of the VT framework and its respective
components is given.

A. Upper Body Kinematics

The manipulation of the upper body for the humanoid
robot is controlled through the VR operator by utilizing an
inverse kinematics solver. The inverse kinematics method is
implemented as a means to decrease the arm end effector
trajectory error. This is possible by using the Jacobian
transformation matrix, which can be obtain by the pseudo-
inverse method and damped least squares method (DLSM)
[14]. The later offers the faster convergence time, and thus it
is chosen for this work in order to minimize system latency.
Considering the given task Jacobian ẋ = J θ̇, the state
motion rate can then be calculated by:

θ̇ = J+ ẋ− αN W−1

(
∂O

∂q

)T

(1)

Where θ̇ is the angular velocity vector for all joints, α is
the damping factor, N is the projection matrix within the null
space, W is the weighted matrix, and O is an optimization
criteria. Moreover, the weighted generalized pseudo-inverse
of the calculated Jacobian is given by J+:

J+ =W−1 JT
(
J W−1 JT

)−1
(2)

N = I − JT J (3)

where I is the identity matrix. Next, since the Jacobian
matrix depends on angular and linear velocities, consider the
velocity vector:

ẋd = (ẋla ωla ẋra ωra)
LI

= J arm θ̇ (4)

where ẋd is the desired velocity, and the subscripts la and
ra stand for left and right arm respectively. Additionally, LI
and RT represents linear and rotational velocities respec-
tively. The upper body rotation Jacobian can be represented
by: (

Gẋub

Gωub

)
=

(
GJLI,ub

GJRT,ub

)
θ̇ (5)

where G is the vector from the global coordinate system
based on the inertial frame. For simplicity, the robot is
assumed to not be moving the lower body during manip-
ulation, and thus the inertial frame is the body frame located
at the CoM of the humanoid. By computing the rotation
and linear matrices for both arms, the final Jacobian for the
upper body can then be determined. However, this solution
creates a singularity when JT J gets close to zero. To solve
this problem, Wampler [12] proposed a correction factor
cf commonly known as the damped least squares method

(DLSM) to minimize ||ẋ− J θ̇||2 + α ||θ̇||2 (residual error).
This solution also has the added benefit of eliminating the
need to apply the correction factor α, since no singularity
occurs.

cf(θ) =
√
det(JT J) (6)

Hence, when cf approaches to zero, α is then adjusted
via

α =

{
α0 (1− t/ts) if t < ts

else 0
(7)

Thus, ts being the threshold value, α0 denotes the damping
factor at the singular points. Finally, α filters singular and
non-singular instances.

B. Genetic Algorithm and Particle Swarm Optimization

When genetic algorithms are applied to solving the in-
verse kinematics problem, the genes of individual solutions
within the population consists of a set of joint angles for
the kinematic configuration of the manipulator. Contrary
to the Jacobian based method, joint limits can be easily
implemented by limiting the range of random joint angle
generation for a manipulator with n degrees of freedom.

x = [θ1, θ2, ..., θn−1, θn]

θmin ≤ θi ≤ θmax for i = 1...n
(8)

Once the population is randomly generated, a fit-
ness/objective function is used to eliminated unfavorable
solutions while maintaining the fittest individuals among
the population. For an inverse kinematics problem, the fit-
ness/objective function is based on the error between the
desired and individual end effector position and orientation
obtained through forward kinematics:

E = ωp||pt − pi||+ ωo(qt · qi) (9)

Where pt and pi represent the desired and individual end
effector position and qt and qi represent the desired and
individual end effector orientation expressed in quaternion
format. ωp is a normalization constant based on the total link
length of the manipulator and ωo is a normalization constant
for end effector orientation.

The survivors of the selection process become parents of
the next generation of individuals through genetic crossover
where solution sets of two parents are randomly combined to
create new offspring. An elitism phase can be implemented
where the best solutions are directly imported into the next
generation to improve convergence speed.

After genetic crossover, particle swarm optimization
(PSO) can be implemented during creation of a new pop-
ulation to further increase the convergence rate.

θ̇i(k + 1) = w(t)θ̇i(k) + w1 · rand()[θp(k)− θi(k)]
+w2 · rand()[θg(k)− θi(k)]

(10)

θi(k + 1) = θi(k) + θ̇i(k + 1) (11)



Fig. 2: System integration diagram illustrating the six main sectors; PODO, DRC-Hubo, Spot, Unity and ROS Motion/Vision

Where θ̇i(k) is the gradient of the ith joint angle in the
previous generation (parents), θi(k) is the previous ith joint
angle, θp(k) is the personal best joint angle, θg(k) is the
global best joint angle, w(k) is the inertia weight, w1 and w2

are weighting factors for personal and global gradient, and
rand() is a random number function between range [0, 1].
Through these gradient adjustment on the new population,
the algorithm exploits PSO characteristics to improve the
convergence rate. The evolved offspring combined with elites
from previous generations forms a new population. The
process terminates when the fitness function satisfies the
criteria.

C. System Overview

The Virtual Teleoperation (VT) framework is spread across
multiple different robots and computers with different oper-
ating systems, and thus needs to be designed agnostically to
accommodate all current and future hardware. Furthermore,
the VT framework is inherently designed to be used over a
network, where all computers within the system framework
can communicate effectively and in real-time. A diagram
depicting the system architecture of the VT framework can
be seen in Figure 2. The VT framework is split into 3 main
systems:

1) Unity, the 3D interface for the virtual reality interface
2) ROS, the Robot Operating System
3) PODO, the real-time system for operating DRC-Hubo

1) Unity: Unity is a cross-platform engine used in a wide
variety of industries, especially for virtual reality/augmented
reality (VR/AR) development. Running on a Windows PC,
the Unity program developed consists of a simulated URDF
of the robot(s), a numerical IK solver on the upper body of
the humanoid robot for manipulation, discussed in Section
III-B, rendering of live pointcloud data from multiple RGBD
cameras, waypoint navigation, and haptic feedback from
forces during manipulation tasks. The main goal of the Unity
interface is to act as a central “control room” for any number
of robots being operated. The system allows for switching
between modes of control (synchronous IK vs. asynchronous
waypoint navigation), robots, and displays. This combination

of control gives the operator a wide variety of control options
that allow for multitasking, seamless teleoperation, and 3D
view of live visual data.

2) ROS: The Robot Operating System (ROS) is an open-
source framework for popular tools, software, and devices
used in the robotics field. ROS was chosen as the main
system to communicate between Unity and other robots due
to its widespread use and adaptability for future solutions
and experimentation. ROS runs separately on the motion
computer (real-time) and the vision computer (NOT real-
time) for the humanoid robot (DRC-Hubo), and also on
the control laptop for the quadruped robot (Spot). The
motion computer consists of a node that connects ROS to
PODO through a TCP server and a node that connects ROS
and Unity through rosbridge. The vision computer, which
process depth images for manipulation, has one node that
communicates between ROS and Unity. Additionally, the
control laptop for Spot contains an instance of rosbridge that
communicates with Spot’s API for feedback and control.

3) PODO: PODO is the real-time system developed by
KAIST HUBO Lab & Rainbow Robotics for operation of
DRC-Hubo. PODO runs on the motion computer (real-
time) and consists of a daemon that manages real-time
operation of joints through CAN bus, as well as on-board
sensors such as inertial measurement unit (IMU) + fibre-
optic gyroscope (FoG) and force-torque (FT) sensors. The
daemon updates sensor data and writes to the CAN bus in
real-time (200 Hz) through the shared memory structure.
This shared memory can then be used by individual programs
(ALs) within PODO to control actions such as manipulation,
walking, etc. To receive data from ROS, a special thread is
created through TCP which then writes data to the shared
memory in real-time. A specific AL was developed for VT
framework to handle manipulation and finger control. In this
AL, trajectories are generated based upon desired joint angles
from shared memory. Since the IK Solver is based in Unity,
processing for manipulation is offloaded from the on-board
PODO computer.



Fig. 3: Operator GUI with Spot & DRC-Hubo commands

4) Spot API: The Spot API released by Boston Dynamics
is written in the Python programming language and uses
Google’s remote procedure call API (gRPC) to communicate
between the Spot robot and the developer’s workstation.
A custom GUI application was programmed to communi-
cate between Unity and the developer’s workstation through
rosbridge, and between the workstation and the Spot robot
through the Spot API. The odometry and joint states are
transmitted to Unity to animate a virtual representation of
Spot. Waypoint data is sent from Unity to the workstation to
command Spot’s locomotion through trajectory commands.

5) Image Processing: Post-processing filters are applied
to the depth images obtained via the Intel Realsense D435
Cameras to improve the versatility and smoothness of the
reconstructed data. One dimensional edge-preserving spatial
filtering is applied to the depth image using 2 iterations
with 20 discrete step-size boundary and 0.5 factor in an
exponential moving average. A simple 4.0 meter clipping
distance was employed to eliminate unwanted data. Finally,
the depth image was aligned with the color image using
extrinsic and intrinsic camera parameters. To optimize band-
width usage, the depth image update rate was constrained to
6 FPS. Instead of sending pointcloud data over the network, a
custom shader in Unity is used to reconstruct and render 3D
pointcloud data from the color and depth images separately.
This greatly reduces the bandwidth required to stream vision
data from the robot to the VR interface.

IV. HARDWARE

Due to the multimodal nature of the VT framework, a
variety of different hardware platforms can be used for
input/output, processing, and actuation. The robot platforms
used in the current implementation and experiments are the
DRC-Hubo humanoid robot developed by Rainbow Robotics
& KAIST HUBO Lab, and the Spot quadruped robot from
Boston Dynamics. The VR platform used is the HTC VIVE.
These systems are not essential to the working order of the
VT framework, and thus they could be replaced with other
VR or robot platforms in the future for further development
and experimentation. Additionally, a custom vision system
was made to augment the previous capabilities of DRC-
Hubo, described in Section IV-D.

Fig. 4: Spot going to waypoint placed by operator

A. HTC VIVE

The main platform used for rendering the virtual haptic
and visual data is the HTC VIVE virtual reality system. This
system contains a 6 DoF headset as well as 2 hand controllers
that also have 6 DoF tracking as well as rumble motors for
haptic rendering. The display on the VIVE sports a resolution
of 1080 x 1200 pixels per eye (2160 x 1200 total resolution)
with a refresh rate of 90 Hz and a FoV of 110◦. The VR
headset is rendered using a custom PC with 4-core i7 CPU,
GTX 980Ti GPU, and 16 GB RAM.

B. Spot

Spot is a quadruped robot developed by Boston Dynamics.
The system allows for dynamic four-legged walking which
lends itself well to a construction environment with unpre-
dictable surfaces. The five on-board RGBD cameras provide
Spot with 360◦field of view and depth awareness that allow
Spot to avoid obstacles during locomotion. The robot has
the ability to carry up to 14 kg of payload. Spot’s usage
is mainly designed as a “blackbox” delivery system that
handles obstacle avoidance and local navigation on-board.

C. DRC-Hubo

DRC-Hubo is a humanoid robot designed for the DARPA
Robotics Challenge (DRC) in 2015, where it came in 1st
place with Team KAIST and 8th place with team DRC-
Hubo@UNLV [3]. The robot has 27 total degrees-of-freedom
(DoF), including 7 DoF per arm, 6 per leg, and 1 for the
waist. The hands on the robot consist of 3 fingers each and
are controlled at once at a constant speed. DRC-Hubo also
contains many state-of-the-art sensors such as force-toque
(FT), IMU, fiber-optic gyroscope (FoG), and encoders on
every joint.

D. Vision Head

For the operator to manipulate objects dynamically
through DRC-Hubo, dense visual feedback is a necessity.
The vision head is designed to be mounted on Hubo’s head
and consists of three Intel Realsense D435 Cameras that
provide both RGB and depth images. Due to the limited FoV
of the RGBD cameras, multiple cameras are used at varying
angles. Two cameras on each side expand the FoV laterally.
The third camera is mounted orthogonal to the robot’s head.



Fig. 5: Experimental setup: operator (left) & robots (right)

A sample of the 3D visual data observed by the operator
through the vision head can be seen in Figure 5.

V. EXPERIMENTATION

When the operator enters the VT framework through the
VR headset and controllers, they are greeted with a control
display that allows the selection of multiple control options,
as seen in Figure 3. The operator has the option to toggle
visual displays from 3 different RGBD cameras, and can see
the current joint states and relative positions of the DRC-
Hubo and Spot through their virtual representations. The
operator can then choose to control Spot, DRC-Hubo, or both
through a selection of buttons in the control display. When
the operator enables synchronous control of DRC-Hubo,
they can control the end-effector position and orientation
of the robot model using the VR controllers. Spot can be
controlled through waypoints placed by the operator using
the VR controllers or pre-programmed waypoints using the
control display, as seen in Figure 4. Spot’s on-board obstacle
avoidance and navigation handle any obstacles within the
environment, and thus these can be ignored by the operator.

To effectively measure the performance of the VT frame-
work and the implementation on both the DRC-Hubo and
Spot, multiple experiments were designed to demonstrate
the unique features of the system applied to a construction
environment. During all experiments, force data and joint
angles of both the simulated (Unity) and actual (DRC-Hubo)
robots were recorded. Additionally, video recordings were
taken of the operator in the VR space, the view of the
operator’s VR headset, and a view of the robot(s) for further
review in the results and video comparison of the work.
Figure 5 shows an example of the operator performing an
experimental task with visual feedback included.

The first experiment consists of 5 different operators, with
varying levels of ability, synchronously controlling the DRC-
Hubo through the VT framework to grasp 2 PVC pipes in
front of it, put the pipe fittings together, and then place the
new part onto the spot for delivery. Each operator performed
5 separate trials for this experiment. This experiment was
mainly designed to test the two-handed manipulation capa-
bilities and to demonstrate the dynamic capabilities of the
system as the operator adjusts to a task.

The second experiment assesses the validity of multimodal
teleoperation of heterogeneous robots. The task presented

Fig. 6: Operator view during collaborative robot task

consists of the operator manipulating a paint bucket, sum-
moning Spot to a placed virtual waypoint, placing the bucket
onto Spot as seen in Figure 6, and finally designating the
“drop-off” point for the bucket to be retrieved. These multi-
modal tasks were performed from the GUI. This experiment
was designed to test the collaboration between synchronously
controlled DRC-Hubo and asynchronously controlled Spot
robot.

The third experiment performed exists to quantitatively
assess the performance of the kinematics and trajectory
generation for the VT framework. This experiment consists
of the operator synchronously controlling the DRC-Hubo to
draw on a whiteboard. This approach lends itself well to
comparing trajectories between simulated (Unity) and actual
(DRC-Hubo) robot models.

Finally, an experiment is provided to show the direction of
the future work toward material handling and manufacturing.
This experiment consists of the operator controlling DRC-
Hubo synchronously to grab a drill from a table and drill a
large hole in a piece of drywall. This task is also similar to
one presented in the DARPA Robotics Challenge, and thus
provides a good comparison to a mostly-automated approach
to the task.

The authors invite the interested reader to go to the
following url to see a demonstration of several trial runs:
https://youtu.be/QRNAWOvpGtw.

VI. RESULTS AND DISCUSSION

Results from the first experiment discussed in Section
V demonstrate the ability for the VT framework to be
used for two-handed manipulation of construction objects.
Figure 7 demonstrates a qualitative comparison between the
simulated (Unity) and actual (DRC-Hubo) joint states for
the two-handed pipe manipulation task. This simulation is
obtained via Matlab c© using the measured encoder values of
the appropriate joints, and calculating the upper body kine-
matics through the respective rotation Jacobians, discussed
in Section III-A. A video comparison of these joint states,
demonstrating the minimal delay in the VT framework, can
be seen in the companion video linked in Section V.

The image data and force torque data was sent from DRC-
Hubo to Unity with an average measured bandwidth of 10.7
MBps. Robot joint data was sent from Unity to PODO with
an average measured bandwidth of 109 KBps. At maximum



Fig. 7: Robot joint states: DRC-Hubo (left), Unity (right)

operation, the virtual reality environment was able to update
each frame at 12.8 ms or 78 FPS on average with maximum
latency at 16.9 ms or 59 FPS. The responsive update rate
provided the operator with intuitive control and reduced the
risk of motion sickness.

Even though the operator receives visual and haptic feed-
back, it still takes a few trials for the operator to consciously
learn how to control the robot. As seen in Figure 8, there
is a correlation between the number of trials and amount
of time it takes to complete the tasks. The time drastically
decreased across each subject as more trials were performed.
Subjects 1, 2, and 4 were familiar with the robot platform the
interface, and completed their first trial faster compared to
Subject 3 who was completely unfamiliar with the architec-
ture. However, Subject 3 improved their time significantly
in next trials showing that there is a low learning curve.
Subject 5 was instructed not to worry about timing, and
instead to prioritize the safety of the robot. This resulted
in a more gradual learning curve, but still demonstrates how
quickly a subject can learn to use the VT framework. On
average operators experienced a 60.8% reduction in task
completion time, with a minimum decrease of 50.6% and a
maximum decrease of 69.2%. As seen with all the subjects,
it is thus expected that the operator will take some time to
get used to the controls, but over time efficiency will increase
significantly.

For manipulation tasks that require high levels of dexterity,
the end-effector trajectory of the actual robot should closely
follow the trajectory of the avatar controlled by the operator.
The task of drawing geometric shapes on a whiteboard
successfully reflects the precision between the virtual and
physical robot’s end-effector position. Figure 9 exhibits the
end-effector trajectory of both virtual (Unity, green) and
physical (DRC-Hubo, red) robot during the drawing of a
rectangular shape on the whiteboard. The figure shows that
the two sets of trajectories almost exactly overlay each other,
suggesting that the trajectory of the physical robot follows
the trajectory of the virtual robot with significant accuracy.
The results of this experiment demonstrate that the VT
framework is capable of manipulation tasks that require high
accuracy and precision.

To demonstrate multimodal teleoperation of heterogeneous
robots, the operator used DRC-Hubo to manipulate and
Spot to deliver an item to a waypoint. Similar to the pipe
manipulation experiments, a “learning curve” effect can be

Fig. 8: Pipe manipulation task trial times

noted from the results. The operator improved the speed of
delivery of the bucket by nearly a full minute. The advantage
of multimodal teleoperation of heterogeneous robots is the
ability of the operator to control distinctive robots to work
collaboratively to accomplish tasks. The humanoid robot
with its two manipulators is suited for object manipula-
tion, while Spot, a quadruped robot, is better suited to
traverse rough terrain. During the multimodal teleoperation,
the operator has the ability to synchronously control DRC-
Hubo’s manipulators. At appropriate times, the operator can
asynchronously summon the Spot robot to specific locations
using custom waypoint markers or predetermined locations
using waypoint commands in the GUI, as seen in Figure 4.
The collaboration between the two robots allows an operator
to accomplish a task that would be otherwise difficult or
impossible for an individual robot to accomplish.

For an operator to perform actions without damaging the
robot, haptic feedback must accurately represent the forces
the robot is experiencing. Figure 10 presents the forces on
Hubo’s right arm as it is cutting the drywall with a drill.
Since the operator is manually controlling the trajectory, the
forces are not constant; instead, the operator must adjust
for these based on haptic feedback. Forces should not pass
the maximum recommended stress force of 60 N or the
robot could be at risk of damage. Force data rendered to the
operator via haptic vibrations to the HTC VIVE controllers,
mentioned in Section IV-A. As the operator passes 10 N
in any direction, the controllers will vibrate, indicating that
Hubo is experiencing substantial forces. The system currently
lacks the ability of providing the operator with knowledge
when they pass the maximum stress force of 60 N . However,
in future work, a method of ”blacking-out” the screen of the
operator may be implemented to prevent damage to the robot
with force of over 60 N .

VII. CONCLUSION AND FUTURE WORK

This paper demonstrates the successful collaboration be-
tween heterogeneous robots using multimodal teleoperation.
Results demonstrated the feasibility of the system as applied
to a construction environment, and especially demonstrated
the ability to control multiple heterogeneous robots through
the interface at the same time. An operator in the interface
can control DRC-Hubo synchronously through the frame-
work, but is also able to control Spot asynchronously. The



Fig. 9: Right arm trajectory for whiteboard drawing

integration of multiple RGBD cameras to stream live 3D data
from different angles proved to be essential to the success
of the implementation. A construction environment could
benefit from implementing this technology due to increased
efficiency and reduced injuries.

Future work will consist of using an anthropomorphic
hand with independent finger control to improve the manip-
ulation of compliant construction materials. Visual feedback
can be further improved by adding roll, pitch, and yaw
control to the vision head mentioned in Section IV-D. Lastly,
an attempt was made using a drill to cut a circle through
the drywall. Improving trajectory control of the current
framework to account for delay would increase the accuracy
of the cut while adding more realistic haptic feedback would
reduce potential damage to the robot or the object. These
will be the main topic of the future work toward material
handling and manufacturing using the VT framework with
DRC-Hubo and Spot.
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