Supplemental Notes

Lego SCARA arm - Determining Vertical Resolution

Figure 1A: A 3-DOF SCARA arm constructed from Lego and XL-320 Dynamixels (left). The vertical DOF (right) uses worm gears and a wedge belt pulley.

Vertical Resolution

Question 1: How does the vertical DOF work?
Answer 1: First, observe in Figure 1A (right) that Lego part 4185 (wedge belt pulley) slides across Lego part 4716 (worm gear). In other words, this is mechanism isn't a traditional worm-spur gear. Rather, the worm simply acts as a threaded "screw" and the wedge belt pulley acts as a "nut". As the worm rotates, the wedge translates.

Question 2: If the worm acts as a screw, what are its dimensions?

Figure 1B: Worm gear has 5 peak-to-peak spacings (yellow braces) and spans 2 studs

Answer 2: Observing the worm gear (Figure 1B left), one easily counts 5 peak-to-peak spacings. This means it takes 5 worm gear revolutions to go from end-to-end.

Also, one sees (Figure 1B right), the worm gear is the same size as an Axle 2. Thus the worm gear spans 2 studs. Recall a stud, which also known as a Fundamental Lego Unit (FLU) is 8 millimeters. Thus we can say the worm gear:

$$
\frac{5 \text { revolutions }}{2 \text { studs }}=2.5 \frac{\text { revolutions }}{\text { stud }}
$$

Question 3: How many revolutions does it take to span one Brick height?

Figure 1C: From http://cs.wellesley.edu/~rds/handouts/LEGOStructures.pdf, all Lego bricks are $6 / 5$ FLU (or studs) tall (left). Since a FLU is 8 mm , this means the Brick is 9.6 mm tall (right). Note: height does not include the stud part.

Vernier calipers indeed confirms 9.6 mm is the height of a Brick 1×1

Answer 3: Referring to Figure 1C, one calculates the following:

$$
2.5 \frac{\text { revolutions }}{\text { FLU }} \times \frac{6}{5} \text { FLU }=3 \text { revolutions }
$$

A YouTube video demonstrates 3 revolutions results in 9.6 mm translation https://youtu.be/OvmJYHDu bo using the NXC program xl320-scaraTest0_1b.nxc.

Question 4: What's the total vertical distance this arm can travel?
Answer 4: The mechanism employs two worm gears. This means 10 peak-to-peak spacings in total. Hence, it will take 10 revolutions for the wedge belt pulley to translate 4 FLU $=4 * 8$ millimeters $=32$ millimeters.

Question 5: What's the vertical resolution? That is, how many millimeters of travel per degree?

Figure 1D: Source https://emanual.robotis.com/docs/en/dxl/x/x|320/ 'shows the XL-320 spans 0 to 300 degrees in servo mode. This means the XL-320 has a 0.29 degree/count resolution.

One has:

$$
1 \frac{\text { revolution }}{360 \text { degrees }} \times \frac{\text { FLU }}{2.5 \text { revolutions }} \times \frac{8 \mathrm{~mm}}{\text { FLU }}=8.89 \times 10^{-3} \frac{\mathrm{~mm}}{\mathrm{deg}}
$$

Alternatively this means 112.5 degrees per millimeter of travel.

In terms of count:

$$
8.89 \times 10^{-3} \frac{\mathrm{~mm}}{\mathrm{deg}} \times 0.29 \frac{\mathrm{deg}}{\operatorname{count}}=2.31 \times 10^{-3} \frac{\mathrm{~mm}}{\operatorname{count}}
$$

Alternatively this means 432 counts per millimeter.

